【題目】在Rt△ABC中,∠ACB=90°,AC=3,BC=4.點O為邊AB上一點(不與A重合)⊙O是以點O為圓心,AO為半徑的圓.當(dāng)⊙O與三角形邊的交點個數(shù)為3時,則OA的范圍( 。
A.0<OA≤或2.5≤OA<5B.0<OA或OA=2.5
C.OA=2.5D.OA=2.5或
【答案】B
【解析】
根據(jù)題意可以畫出相應(yīng)的圖形,然后即可得到OA的取值范圍,本題得以解決.
解:如右圖所示,
當(dāng)圓心從O1到O3的過程中,⊙O與三角形邊的交點個數(shù)為3,當(dāng)恰好到達(dá)O3時則變?yōu)?/span>4個交點,
作O3D⊥BC于點D,
則∠O3BD=∠ABC,
∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB=5,
設(shè)O3A=a,則O3B=5﹣a,
∴ ,得 ,
∴當(dāng) 時,⊙O與三角形邊的交點個數(shù)為3,
當(dāng)點O為AB的中點時,⊙O與三角形邊的交點個數(shù)為3,此時OA=2.5,
由上可得, 或OA=2.5時,⊙O與三角形邊的交點個數(shù)為3,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與x軸交于點B,與y軸交于點C,二次函數(shù)的圖象經(jīng)過點B,C兩點,且與x軸的負(fù)半軸交于點A,動點D在直線BC下方的二次函數(shù)圖象上.
(1)求二次函數(shù)的表達(dá)式;
(2)如圖1,連接DC,DB,設(shè)△BCD的面積為S,求S的最大值;
(3)如圖2,過點D作DM⊥BC于點M,是否存在點D,使得△CDM中的某個角恰好等于∠ABC的2倍?若存在,直接寫出點D的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點,與軸交于點,過點作軸于點,點是線段的中點,,,點的坐標(biāo)為.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABDE是平行四邊形,C為邊B D延長線上一點,連結(jié)AC、CE,使AB=AC.
(1)求證:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四邊形ABDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過點D作DE∥AB交CA的延長線于點E,連接AD,BD.
(1)由AB,BD,圍成的曲邊三角形的面積是 ;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別與軸、軸相交于點B、C,經(jīng)過點B、C的拋物線與軸的另一個交點為A.
(1)求出拋物線表達(dá)式,并求出點A坐標(biāo);
(2)已知點D在拋物線上,且橫坐標(biāo)為3,求出△BCD的面積;
(3)點P是直線BC上方的拋物線上一動點,過點P作PQ垂直于軸,垂足為Q.是否存在點P,使得以點A、P、Q為頂點的三角形與△BOC相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)一種商品的需求量y1(單位:萬件)、供應(yīng)量y2(單位;萬件)與價格x(單位:元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍時,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補(bǔ)貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補(bǔ)貼才能使供應(yīng)量等于需求量?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊共同開鑿一條隧道,甲隊按一定的工作效率先施工,一段時間后,乙隊從隧道的另一端按一定的工作效率加入施工,中途乙隊遇到碎石層,工作效率降低,當(dāng)乙隊完成碎石層時恰好隧道被打通,此時甲隊工作了45天.設(shè)甲、乙兩隊各自開鑿隧道的長度為y(米),甲隊的工作時間為x(天),y與x之間的函數(shù)圖象如圖所示.
(1)求甲隊的工作效率.
(2)求乙隊在碎石層施工時y與x之間的函數(shù)關(guān)系式.
(3)求這條隧道的總長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑.某中學(xué)為了了解全校學(xué)生課外閱讀情況,隨機(jī)抽查了200名學(xué)生,統(tǒng)計他們平均每天課外閱讀時間(小時).根據(jù)每天課外閱讀時間的長短分為A,B,C.D四類,下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計圖表,請根據(jù)圖中提供的信息,解答下面的問題:
200名學(xué)生平均每天課外閱讀時間統(tǒng)計表
類別 | 時間t(小時) | 人數(shù) |
A | t<0.5 | 40 |
B | 0.5≤t<1 | 80 |
C | 1≤t<1.5 | 60 |
D | t≥1.5 | a |
(1)求表格中a的值,并在圖中補(bǔ)全條形統(tǒng)計圖:
(2)該,F(xiàn)有1800名學(xué)生,請你估計該校共有多少名學(xué)生課外閱讀時間不少于1小時?
(3)請你根據(jù)上述信息對該校提出相應(yīng)的建議
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com