【題目】某地區(qū)一種商品的需求量y1(單位:萬(wàn)件)、供應(yīng)量y2(單位;萬(wàn)件)與價(jià)格x(單位:元/件)分別近似滿(mǎn)足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時(shí),即停止供應(yīng).當(dāng)y1=y2時(shí),該商品的價(jià)格稱(chēng)為穩(wěn)定價(jià)格,需求量稱(chēng)為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價(jià)格與穩(wěn)定需求量;
(2)價(jià)格在什么范圍時(shí),該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時(shí),政府常通過(guò)對(duì)供應(yīng)方提供價(jià)格補(bǔ)貼來(lái)提高供貨價(jià)格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬(wàn)件,政府應(yīng)對(duì)每件商品提供多少元補(bǔ)貼才能使供應(yīng)量等于需求量?
【答案】(1)該商品的穩(wěn)定價(jià)格為32元/件,穩(wěn)定需求量為28萬(wàn)件;(2)當(dāng)價(jià)格大于32元/件而小于60元/件時(shí),該商品的需求量低于供應(yīng)量;(3)6元的補(bǔ)貼.
【解析】
(1)實(shí)質(zhì)是求函數(shù)的交點(diǎn)坐標(biāo),利用y1=y2可求解;
(2)因?yàn)?/span>“需求量為0時(shí),即停止供應(yīng)”,所以,當(dāng)y1=0時(shí),有x=60.又由圖象,知x>32,利用題意和圖象綜合可知當(dāng)價(jià)格大于32元/件而小于60元/件時(shí),該商品的需求量低于供應(yīng)量;
(3)根據(jù)題意列方程組求解即可.
(1)當(dāng)y1=y2時(shí),有-x+60=2x-36.
∴x=32,
此時(shí)-x+60=28,
所以該商品的穩(wěn)定價(jià)格為32元/件,穩(wěn)定需求量為28萬(wàn)件;
(2)因?yàn)?/span>“需求量為0時(shí),即停止供應(yīng)”,
∴當(dāng)y1=0時(shí),有x=60,
又-x+60<2x-36
解得:x>32,
∴當(dāng)價(jià)格大于32元/件而小于60元/件時(shí),該商品的需求量低于供應(yīng)量;
(3)設(shè)政府部門(mén)對(duì)該商品每件應(yīng)提供a元補(bǔ)貼.
根據(jù)題意,得方程組
解這個(gè)方程組,得
.
所以,政府部門(mén)對(duì)該商品每件應(yīng)提供6元的補(bǔ)貼.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為半圓的直徑,點(diǎn)為半圓上任一點(diǎn).
(1)若,過(guò)點(diǎn)作半圓的切線交直線于點(diǎn).求證:;
(2)若,過(guò)點(diǎn)作的平行線交半圓于點(diǎn).當(dāng)以點(diǎn),,,為頂點(diǎn)的四邊形為菱形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AD為直徑的半圓O經(jīng)過(guò)Rt△ABC斜邊AB的兩個(gè)端點(diǎn),交直角邊AC于點(diǎn)E,B、E是半圓弧的三等分點(diǎn),弧BE的長(zhǎng)為π,則圖中陰影部分的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=3,BC=4.點(diǎn)O為邊AB上一點(diǎn)(不與A重合)⊙O是以點(diǎn)O為圓心,AO為半徑的圓.當(dāng)⊙O與三角形邊的交點(diǎn)個(gè)數(shù)為3時(shí),則OA的范圍( )
A.0<OA≤或2.5≤OA<5B.0<OA或OA=2.5
C.OA=2.5D.OA=2.5或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進(jìn)路線,在BC的中點(diǎn)M處放置了一臺(tái)定位儀器,設(shè)尋寶者行進(jìn)的時(shí)間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示y與x的函數(shù)關(guān)系的圖像大致如圖②所示,則尋寶者的行進(jìn)路線可能為:
A. A→O→B B. B→A→C C. B→O→C D. C→B→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有5張除正面數(shù)字外完全相同的卡片,正面數(shù)字分別為1,2,3,4,5,將卡片背面朝上洗勻,從中隨機(jī)抽出一張記下數(shù)字后放回,洗勻后再次隨機(jī)抽出一張,則抽出的兩張卡片上所寫(xiě)數(shù)字相同的概率______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在中,為邊上一點(diǎn),過(guò)點(diǎn)作交于點(diǎn),連接,為的中點(diǎn),連接.
(觀察猜想)
(1)①的數(shù)量關(guān)系是___________
②的數(shù)量關(guān)系是______________
(類(lèi)比探究)
(2)將圖①中繞點(diǎn)逆時(shí)針旋轉(zhuǎn),如圖②所示,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(拓展遷移)
(3)將繞點(diǎn)旋轉(zhuǎn)任意角度,若,請(qǐng)直接寫(xiě)出點(diǎn)在同一直線上時(shí)的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過(guò)點(diǎn)A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿(mǎn)足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AE平分∠BAC交BC于E,CD⊥AE交AE延長(zhǎng)線于D,連接BD,若BD=CD,⊙O是以AE為直徑的△ABE的外接圓,與AC交于點(diǎn)H.
(1)求證:BD為⊙O的切線;
(2)設(shè)⊙O的半徑為1,BF平分∠ABC交AE于G,交⊙O于F;
①求的值.
②求BE2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com