【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)以上信息,回答下列問題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù) .
(3)請估計(jì)全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
【答案】(1)抽樣調(diào)查(2)150°(3)180件(4)
【解析】分析:(1)楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班,屬于抽樣調(diào)查.
(2)由題意得:所調(diào)查的4個(gè)班征集到的作品數(shù)為:6÷=24(件),C班作品的件數(shù)為:24-4-6-4=10(件);繼而可補(bǔ)全條形統(tǒng)計(jì)圖;
(3)先求出抽取的4個(gè)班每班平均征集的數(shù)量,再乘以班級總數(shù)可得;
(4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩名學(xué)生性別相同的情況,再利用概率公式即可求得答案.
詳解:(1)楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班,屬于抽樣調(diào)查.
故答案為:抽樣調(diào)查.
(2)所調(diào)查的4個(gè)班征集到的作品數(shù)為:6÷=24件,
C班有24﹣(4+6+4)=10件,
補(bǔ)全條形圖如圖所示,
扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù)360°×=150°;
故答案為:150°;
(3)∵平均每個(gè)班=6件,
∴估計(jì)全校共征集作品6×30=180件.
(4)畫樹狀圖得:
∵共有20種等可能的結(jié)果,兩名學(xué)生性別相同的有8種情況,
∴恰好選取的兩名學(xué)生性別相同的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在咸寧創(chuàng)建“國家衛(wèi)生城市”的活動中,市園林公司加大了對市區(qū)主干道兩旁植“景觀樹”的力度,平均每天比原計(jì)劃多植5棵,現(xiàn)在植60棵所需的時(shí)間與原計(jì)劃植45棵所需的時(shí)間相同,問現(xiàn)在平均每天植多少棵樹?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣11,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距29個(gè)長度單位.動點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動,從點(diǎn)O運(yùn)動到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動,從點(diǎn)B運(yùn)動到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動的時(shí)間為t秒.
問:(1)動點(diǎn)P從點(diǎn)A運(yùn)動至C點(diǎn)需要多少時(shí)間?
(2)P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正的邊長為2,過點(diǎn)的直線,且與關(guān)于直線對稱.
(Ⅰ)連接,判斷四邊形的形狀并進(jìn)行證明.
(Ⅱ)為線段上一動點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)定義運(yùn)算:對于任意有理數(shù)a、b,都有ab=ab-b,如:23=2×3-3,請根據(jù)以上定義解答下列各題:
(1) 2(-3)=___________,x(-2)=___________;
(2) 化簡:[(-x)3] (-2);
(3) 若x =3(-x),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶市的重大惠民工程﹣﹣公租房建設(shè)已陸續(xù)竣工,計(jì)劃10年內(nèi)解決低收入人群的住房問題,前6年,每年竣工投入使用的公租房面積y(單位:百萬平方米),與時(shí)間x的關(guān)系是y=x+5,(x單位:年,1≤x≤6且x為整數(shù));后4年,每年竣工投入使用的公租房面積y(單位:百萬平方米),與時(shí)間x的關(guān)系是y=-x+(x單位:年,7≤x≤10且x為整數(shù)).假設(shè)每年的公租房全部出租完.另外,隨著物價(jià)上漲等因素的影響,每年的租金也隨之上調(diào),預(yù)計(jì),第x年投入使用的公租房的租金z(單位:元/m2)與時(shí)間x(單位:年,1≤x≤10且x為整數(shù))滿足一次函數(shù)關(guān)系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z與x的函數(shù)關(guān)系式;
(2)求政府在第幾年投入的公租房收取的租金最多,最多為多少百萬元;
(3)若第6年竣工投入使用的公租房可解決20萬人的住房問題,政府計(jì)劃在第10年投入的公租房總面積不變的情況下,要讓人均住房面積比第6年人均住房面積提高a%,這樣可解決住房的人數(shù)將比第6年減少1.35a%,求a的值.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長為1,寬為a的矩形紙片(),如圖那樣折一下,剪下一個(gè)邊長等于矩形寬度的正方形(稱為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個(gè)邊長等于此時(shí)矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.若在第n此操作后,剩下的矩形為正方形,則操作終止.當(dāng)n=3時(shí),a的值為( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
(1)寫出你所知道的四邊形中是勾股四邊形的兩種圖形的名稱_____,_____;
(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°后得到△DBE,連接AD、DC,若∠DCB=30°,試證明;DC2+BC2=AC2.(即四邊形ABCD是勾股四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎自行車上學(xué),開始以正常速度勻速行駛,但行至中途自行車出了故障,只好停下來修車,車修后,因怕耽誤上課,他比修車前加快了騎車速度繼續(xù)勻速行駛,正面是行駛路程S(米)關(guān)于時(shí)間t(分)的函數(shù)圖象,那么符合這個(gè)同學(xué)行駛情況的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com