【題目】如圖,在正方形中,為對角線,為上一點,連接,,的延長線交于點,,則的度數(shù)為________.
【答案】
【解析】
由四邊形ABCD是正方形,易得證得△BEC≌△DEC,然后根據(jù)全等三角形的性質(zhì)知對應(yīng)角相等,即∠BEC=∠DEC=∠BED,又由對頂角相等、三角形的一個內(nèi)角的補(bǔ)角是另外兩個內(nèi)角的和求得∠EFD=∠BEC+∠CAD.
∵四邊形ABCD是正方形,
∴BC=CD,∠ECB=∠ECD=45.
∴在△BEC與△DEC中,
BC=CD∠ECB=∠ECDEC=EC,
∴△BEC≌△DEC(SAS),
∴∠BEC=∠DEC=∠BED,
∵∠BED=120,
∴∠BEC=60=∠AEF,
∴∠EFD=∠CAD+∠AEF=60+45=105
故答案為:105.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.
(1)觀察猜想如圖1,點E在BC上,線段AE與BD的數(shù)量關(guān)系,位置關(guān)系.
(2)探究證明把△CDE繞直角頂點C旋轉(zhuǎn)到圖2的位置,(1)中的結(jié)論還成立嗎?說明理由;
(3)拓展延伸:把△CDE繞點C在平面內(nèi)自由旋轉(zhuǎn),若AC=BC=13,DE=10,當(dāng)A、E、D三點在直線上時,請直接寫出AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年1月23日,安徽省省政府新聞辦召開新聞發(fā)布會,通報了2017年全省經(jīng)濟(jì)運(yùn)行情況。據(jù)省統(tǒng)計局新聞發(fā)言人趙金寶介紹,去年我省GDP突破19000億元,連續(xù)第十年保持兩位數(shù)增長,增速明顯高于全國,位居中部第一。初步核算,全年全省生產(chǎn)總值19033.3億元,按可比價格計算,比2015年增加3303.3億元,連續(xù)10年保持兩位數(shù)增長,增幅居全國第11、中部第1位。求自2015年起的年平均增長率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,
(1)求證:△BCE≌△DCF;
(2)若AB=21,AD=9,BC=CD=10,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將直角的頂點放在正方形的對角線上,使角的一邊交于點,另一邊交或其延長線于點,求證:;
如圖,將直角頂點放在矩形的對角線交點,、分別交與于點、,且平分.若,,求、的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 是邊長為 4 的等邊三角形,點 D 是 AB 上異 于 A,B 的一動點,將△ACD 繞點 C 逆時針旋轉(zhuǎn) 60°得△BCE, 則旋轉(zhuǎn)過程中△BDE 周長的最小值_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法: ①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當(dāng)﹣1<x<3時,y>0,其中正確的是( 。
A. ①②④ B. ①②⑤ C. ①②③④ D. ①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com