【題目】如圖,在中是直徑,點(diǎn)是上一點(diǎn),點(diǎn)是的中點(diǎn),過點(diǎn)作的切線,與、的延長線分別交于點(diǎn)、,連接.
(1)求證:.
(2)已知的半徑為2,當(dāng)為何值時(shí),,并說明理由.
【答案】(1)證明見解析;(2)當(dāng)時(shí),.理由見解析.
【解析】
(1)連接OE,由點(diǎn)E是的中點(diǎn),過點(diǎn)E作⊙O的切線,可得OE⊥CD,BD∥OE,進(jìn)而得出BD⊥CD;
(2)當(dāng)AC=4時(shí),連接AF,證明△AFB∽△BCD,所以,即BF=DF.
(1)如圖1,連接,
∵與相切于點(diǎn),
∴,
∴.
∵點(diǎn)是的中點(diǎn),
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∴.
(2)當(dāng)時(shí),.理由如下:
如圖2,連接,
∵是的直徑,
∴,
由(1)知,
∴,
∴△AFB∽△BCD,
∴,
當(dāng)時(shí),
∵的半徑為2,
∴,
∴BC=AB+AC=8,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生“國學(xué)經(jīng)典大賽”,比賽項(xiàng)目為:A.唐詩;B.宋詞;C.元曲;D.論語.比賽形式分“單人組”和“雙人組”.
(1)小明參加“單人組”,他從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,則抽到“唐詩”的是 事件,其概率是 ;
(2)若小亮和小麗組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則小亮和小麗都沒有抽到“元曲”的概率是多少?請(qǐng)用畫樹狀圖或列表的方法進(jìn)行說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:梯形ABCD中,AD∥BC,E為AC的中點(diǎn),連接DE并延長交BC于點(diǎn)F,連接AF.
(1)求證:AD=CF;
(2)在原有條件不變的情況下,請(qǐng)你再添加一個(gè)條件(不再增添輔助線),使四邊形AFCD成為菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)為弘揚(yáng) “東亞文化”,某單位開展了“東亞文化之都”演講比賽,在安排1位女選手和3位男選手的出場順序時(shí),采用隨機(jī)抽簽方式.
(1)請(qǐng)直接寫出第一位出場是女選手的概率;
(2)請(qǐng)你用畫樹狀圖或列表的方法表示第一、二位出場選手的所有等可能結(jié)果,并求出他們都是男選手的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,為中點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),以為邊向的右側(cè)作正方形,連接,則在點(diǎn)的運(yùn)動(dòng)過程中,線段的最小值為:( )
A.2B.C.1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,自左至右,第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成;第2個(gè)圖由2個(gè)正六邊形、11個(gè)正方形和10個(gè)等邊三角形組成;第3個(gè)圖由3個(gè)正六邊形、16個(gè)正方形和14個(gè)等邊三角形組成;…,按照此規(guī)律,第n個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和為( 。﹤(gè).
A.9nB.6nC.9n+3D.6n+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為.雙曲線的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是OC邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)D、E分別在BC、AC上,且BD=CE,設(shè)點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)為F,若DF∥AB,則BD的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相較于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③DP2=PH·PC;④若AB=2,則S△BPD=;其中正確的是( )
A.①②③④B.②③C.①②④D.①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com