【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.

已知,△ABC中,ABAC,∠BACα,點D、E在邊BC上,且∠DAEα

1)如圖1,當(dāng)α60°時,將△AEC繞點A順時針旋轉(zhuǎn)60°到△AFB的位置,連接DF,

求∠DAF的度數(shù);

求證:△ADE≌△ADF

2)如圖2,當(dāng)α90°時,猜想BDDE、CE的數(shù)量關(guān)系,并說明理由;

3)如圖3,當(dāng)α120°,BD4CE5時,請直接寫出DE的長為   

【答案】(1)①30°②見解析(2)BD2+CE2DE23

【解析】

1)①利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=CAE,再用角的和即可得出結(jié)論;②利用SAS判斷出△ADE≌△ADF,即可得出結(jié)論;

2)先判斷出BF=CE,∠ABF=ACB,再判斷出∠DBF=90°,即可得出結(jié)論;

3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出結(jié)論.

解:(1)①由旋轉(zhuǎn)得,∠FAB=∠CAE,

∵∠BAD+CAE=∠BAC﹣∠DAE60°30°30°,

∴∠DAF=∠BAD+BAF=∠BAD+CAE30°;

②由旋轉(zhuǎn)知,AFAE,∠BAF=∠CAE,

∴∠BAF+BAD=∠CAE+BAD=∠BAC﹣∠DAE=∠DAE,

在△ADE和△ADF中,,

∴△ADE≌△ADFSAS);

2BD2+CE2DE2,

理由:如圖2,將△AEC繞點A順時針旋轉(zhuǎn)90°到△AFB的位置,連接DF,

BFCE,∠ABF=∠ACB

由(1)知,△ADE≌△ADF

DEDF,

ABAC,∠BAC90°,

∴∠ABC=∠ACB45°,

∴∠DBF=∠ABC+ABF=∠ABC+ACB90°,

根據(jù)勾股定理得,BD2+BF2DF2,

即:BD2+CE2DE2;

3)如圖3,將△AEC繞點A順時針旋轉(zhuǎn)90°到△AFB的位置,連接DF,

BFCE,∠ABF=∠ACB

由(1)知,△ADE≌△ADF

DEDFBFCE5,

ABAC,∠BAC90°

∴∠ABC=∠ACB30°,

∴∠DBF=∠ABC+ABF=∠ABC+ACB60°,

過點FFMBCM,

RtBMF中,∠BFM90°﹣∠DBF30°,

BF5

,

BD4

DMBDBM,

根據(jù)勾股定理得, ,

DEDF,

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將分別標(biāo)有數(shù)字16,8的三張卡片(卡片除所標(biāo)注數(shù)字外其他均相同)洗勻后,背面朝上放在桌面上.

1)隨機抽取一張卡片,抽到的卡片所標(biāo)數(shù)字是偶數(shù)的概率為   ;

2)隨機抽取一張卡片,將卡片上標(biāo)有的數(shù)字作為十位上的數(shù)字(不放回),再隨機抽取一張卡片,將卡片上標(biāo)有的數(shù)字作為個位上的數(shù)字,用列表或畫樹狀圖的方法求組成的兩位數(shù)恰好是“68”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按AB,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.

根據(jù)所給信息,解答以下問題:

1)在這次調(diào)查中一共抽取了  名學(xué)生;

2)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是  度;

3)補全條形統(tǒng)計圖;

4)所抽取學(xué)生的足球運球測試成績的中位數(shù)落在  等級;

5)該校九年級有300名學(xué)生,請估計足球運球測試成績達到A級的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳某學(xué)校為構(gòu)建書香校園,擬購進甲、乙兩種規(guī)格的書柜放置新購置的圖書.已知每個甲種書柜的進價比每個乙種書柜的進價高20%,用3600元購進的甲種書柜的數(shù)量比用4200元購進的乙種書柜的數(shù)量少4臺.

1)求甲、乙兩種書柜的進價;

2)若該校擬購進這兩種規(guī)格的書柜共60個,其中乙種書柜的數(shù)量不大于甲種書柜數(shù)量的2倍.請您幫該校設(shè)計一種購買方案,使得花費最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AB10cm,cosBM、N分別是邊BCAC上的兩個動點,點M2cm/s的速度沿CB方向運動,同時點N1cm/s的速度沿AC方向運動,當(dāng)其中一點到達終點時,另一點也隨之停止運動,設(shè)運動時間為t,四邊形ABMN的面積為S,則下列能大致反映St函數(shù)關(guān)系的圖象是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F是正方形ABCD對角線AC上的兩點,且,連接BE、DEBF、DF

求證:四邊形BEDF是菱形:

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,CO的延長線交AB于點D.

(1)求證:AO平分∠BAC;

(2)BC=6,sinBAC=,求ACCD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F、GH分別為矩形ABCD的邊AB、BCCD、DA的中點,連接AC、HE、EC,GA,GF.已知AGGF,AC=,則AB的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個工程隊需完成A、B兩個工地的工程.若甲、乙兩個工程隊分別可提供40個和50個標(biāo)準(zhǔn)工作量,完成AB兩個工地的工程分別需要70個和20個標(biāo)準(zhǔn)工作量,且兩個工程隊在AB兩個工地的1個標(biāo)準(zhǔn)工作量的成本如下表所示:

A工地

B工地

甲工程隊

800

750

乙工程隊

600

570

設(shè)甲工程隊在A工地投入x20≤x≤40)個標(biāo)準(zhǔn)工作量,完成這兩個工程共需成本y元.

1)求yx之間的函數(shù)關(guān)系式;

2)請判斷y是否能等于62000,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案