【題目】某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,BC,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.

根據(jù)所給信息,解答以下問題:

1)在這次調(diào)查中一共抽取了  名學生;

2)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是  度;

3)補全條形統(tǒng)計圖;

4)所抽取學生的足球運球測試成績的中位數(shù)落在  等級;

5)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?

【答案】140;(2117;(3)補全的條形統(tǒng)計圖如圖所示;見解析;(4B;(5)足球運球測試成績達到A級的學生有30人.

【解析】

1)根據(jù)B等級的學生數(shù)和所占的百分比可以求得本次調(diào)查的學生數(shù);

2)根據(jù)(1)中的結(jié)果可以求得在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角的度數(shù);

3)根據(jù)(1)中的結(jié)果可以求得C等級的人數(shù),從而可以將條形統(tǒng)計圖補充完整;

4)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以得到所抽取學生的足球運球測試成績的中位數(shù)落在哪個等級;

5)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得足球運球測試成績達到A級的學生有多少人.

118÷45%40

即在這次調(diào)查中一共抽取了40名學生,

故答案為:40

2)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是:360°×117°

故答案為:117;

3C等級的人數(shù)為:40418513,

補全的條形統(tǒng)計圖如圖所示;

4)由統(tǒng)計圖可知,

所抽取學生的足球運球測試成績的中位數(shù)落在B等級,

故答案為:B;

5300×30(人),

答:足球運球測試成績達到A級的學生有30人.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)方法形成

如圖①,在四邊形ABCD中,ABDC,點HBC的中點,連結(jié)AH并延長交DC的延長線于M,則有CMAB.請說明理由;

2)方法遷移

如圖②,在四邊形ABCD中,點HBC的中點,EAD上的點,且ABEDEC都是等腰直角三角形,∠BAE=∠EDC90°.請?zhí)骄?/span>AHDH之間的關(guān)系,并說明理由.

3)拓展延伸

在(2)的條件下,將RtDEC繞點E旋轉(zhuǎn)到圖③的位置,請判斷(2)中的結(jié)論是否依然成立?若成立,請說明理由;若不成立,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,AC是弦,直線EF經(jīng)過點C,ADEF于點D,DAC=BAC.

(1)求證:EFO的切線;

(2)求證:AC2=AD·AB;

(3)若O的半徑為2,ACD=300,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線yx0)的圖象經(jīng)過點A4),直線yx與雙曲線交于B點,過A,B分別作y軸、x軸的垂線,兩線交于P點,垂足分別為C,D

1)求雙曲線的解析式;

2)求證:ABP∽△BOD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某青春黨支部在精準扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.

(1)求甲、乙兩種樹苗每棵的價格各是多少元?

(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一長假期間,某玩具超市設(shè)立了一個如圖所示的可以自由轉(zhuǎn)動的轉(zhuǎn)盤,開展有獎購買活動,顧客購買玩具就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)獎品.下表是該活動的一組統(tǒng)計數(shù)據(jù):

轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n

100

150

200

500

800

1000

落在鉛筆區(qū)域的次數(shù)m

68

108

140

355

560

690

落在鉛筆區(qū)域的頻率

0.68

0.72

0.70

0.71

0.70

0.69

下列說法不正確的是( 。

A. n很大時,估計指針落子在鉛筆區(qū)域的概率大約是0.70

B. 假如你去轉(zhuǎn)動轉(zhuǎn)盤一次,獲得鉛筆概率大約是0.70

C. 如果轉(zhuǎn)動轉(zhuǎn)盤3000次,指針落在文具盒區(qū)域的次數(shù)大約有900

D. 轉(zhuǎn)動轉(zhuǎn)盤20次,一定有6次獲得文具盒

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖是由5個相同的小正方體組成的幾何體,其主視圖和左視圖相同的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】旋轉(zhuǎn)變換是解決數(shù)學問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.

已知,△ABC中,ABAC,∠BACα,點DE在邊BC上,且∠DAEα

1)如圖1,當α60°時,將△AEC繞點A順時針旋轉(zhuǎn)60°到△AFB的位置,連接DF

求∠DAF的度數(shù);

求證:△ADE≌△ADF;

2)如圖2,當α90°時,猜想BD、DE、CE的數(shù)量關(guān)系,并說明理由;

3)如圖3,當α120°,BD4,CE5時,請直接寫出DE的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊ABAD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接ACEF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請說明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關(guān)系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

同步練習冊答案