【題目】如圖,已知,在平面直角坐標系中S△ABC=24,OA=OB,BC=12.
(1)求出三個頂點坐標.
(2)若P點為y軸上的一動點,且△ABP的面積等于△ABC的面積,求點P的坐標.
【答案】(1)A(0,4),B(-4,0),C(8,0);(2)(0,16)或(0,-8)
【解析】
(1)根據(jù)三角形的面積公式求出OA、OB、OC的長,確定△ABC三個頂點的坐標;
(2)根據(jù)圖形和三角形的面積公式求出AP的長,運用分情況討論思想得到P點的坐標.
解:(1)∵S△ABC=BCOA=24,OA=OB,BC=12,∴OA=OB==4,
∴OC=8,
∴A(0,4),B(-4,0),C(8,0);
(2)設AP長為x,
∵S△ABP=S△ABC=24,
∴APOB=24,
∵OB=4,
∴AP=12,
當P點在點A上方時,點P(0,16),
當P點在點A下方時,點P(0,-8),
綜上所述P點坐標為(0,16)或(0,-8).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一條拋物線與x軸相交于A,B兩點,其頂點P在折線C-D-E上移動,若點C,D,E的坐標分別為(-1,4),(3,4),(3,1),點B的橫坐標的最小值為1,則點A的橫坐標的最大值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,E是AD的中點,將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于F,連接EF,若AB=4,若BC=6,則DF的長為_______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等邊三角形ABC,AB=12,以AB為直徑的半圓與BC邊交于點D,過點D作DF⊥AC,垂足為F,過點F作FG⊥AB,垂足為G,連接GD,
(1)求證:DF與⊙O的位置關(guān)系并證明;
(2)求FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC中點,過點D的直線GF交AC于F,交AC的平行線BG于G,DE⊥DF,交AB于E,連接BG,請你判斷BE+CF與EF的大小關(guān)系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xoy中,點A、B的坐標分別是A(-1,0),B(3,0),將線段AB向上平移2個單位,再向右平移1個單位,得到線段DC,點A、B的對應點分別是D、C,連接AD、BC.
(1)直接寫出點C,D的坐標;
(2)求四邊形ABCD的面積;
(3)點P為線段BC上任意一點(與點B、C不重合),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為 1,CD⊥AB 于點 D,E 為射線 CD 上一點,以BE為邊在 BE 左側(cè)作等邊△BEF,則DF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:如圖1、圖2、圖3,在中,把繞點順時針旋轉(zhuǎn)得到,把繞點逆時針旋轉(zhuǎn)得到,連接,當時,我們稱是的“旋補三角形”,邊上的中線叫做的“旋補中線”,點叫做“旋補中心”.圖1、圖2、圖3中的均是的“旋補三角形”.
(1)①如圖2,當為等邊三角形時,“旋補中線”與的數(shù)量關(guān)系為:______;
②如圖3,當,時,則“旋補中線”長為______.
(2)在圖1中,當為任意三角形時,猜想“旋補中線”與的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com