【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+6經(jīng)過點(diǎn)A(﹣3,0)和點(diǎn)B(2,0),直線y=h(h為常數(shù),且0<h<6)與BC交于點(diǎn)D,與y軸交于點(diǎn)E,與AC交于點(diǎn)F.
(1)求拋物線的解析式;
(2)連接AE,求h為何值時(shí),△AEF的面積最大.
(3)已知一定點(diǎn)M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請(qǐng)求出h的值和點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=﹣x2﹣x+6;(2)當(dāng)h=3時(shí),△AEF的面積最大,最大面積是 .(3)存在,當(dāng)h=時(shí),點(diǎn)D的坐標(biāo)為(,);當(dāng)h=時(shí),點(diǎn)D的坐標(biāo)為(,).
【解析】
(1)利用待定系數(shù)法即可解決問題.
(2)由題意可得點(diǎn)E的坐標(biāo)為(0,h),點(diǎn)F的坐標(biāo)為( ,h),根據(jù)S△AEF=OEFE=h=﹣(h﹣3)2+.利用二次函數(shù)的性質(zhì)即可解決問題.
(3)存在.分兩種情形情形,分別列出方程即可解決問題.
解:如圖:
(1)∵拋物線y=ax2+bx+6經(jīng)過點(diǎn)A(﹣3,0)和點(diǎn)B(2,0),
∴,
解得:.
∴拋物線的解析式為y=﹣x2﹣x+6.
(2)∵把x=0代入y=﹣x2﹣x+6,得y=6,
∴點(diǎn)C的坐標(biāo)為(0,6),
設(shè)經(jīng)過點(diǎn)A和點(diǎn)C的直線的解析式為y=mx+n,則,
解得 ,
∴經(jīng)過點(diǎn)A和點(diǎn)C的直線的解析式為:y=2x+6,
∵點(diǎn)E在直線y=h上,
∴點(diǎn)E的坐標(biāo)為(0,h),
∴OE=h,
∵點(diǎn)F在直線y=h上,
∴點(diǎn)F的縱坐標(biāo)為h,
把y=h代入y=2x+6,得h=2x+6,
解得x=,
∴點(diǎn)F的坐標(biāo)為( ,h),
∴EF=.
∴S△AEF=OEFE=h=﹣(h﹣3)2+,
∵﹣<0且0<h<6,
∴當(dāng)h=3時(shí),△AEF的面積最大,最大面積是 .
(3)存在符合題意的直線y=h.
∵B(2,0),C(0,6),
∴直線BC的解析式為y=﹣3x+6,設(shè)D(m,﹣3m+6).
①當(dāng)BM=BD時(shí),(m﹣2)2+(﹣3m+6)2=42,
解得m=或(舍棄),
∴D(,),此時(shí)h=.
②當(dāng)MD=BM時(shí),(m+2)2+(﹣3m+6)2=42,
解得m=或2(舍棄),
∴D(,),此時(shí)h=.
∵綜上所述,存在這樣的直線y=或y=,使△BDM是等腰三角形,當(dāng)h=時(shí),點(diǎn)D的坐標(biāo)為(,);當(dāng)h=時(shí),點(diǎn)D的坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)學(xué)生某科目學(xué)期總評(píng)成績(jī)是由完成作業(yè)、單元檢測(cè)、期末考試三項(xiàng)成績(jī)構(gòu)成的,如果學(xué)期總評(píng)成績(jī)80分以上(含80分),則評(píng)定為“優(yōu)秀”,下表是小張和小王兩位同學(xué)的成績(jī)記錄:
完成作業(yè) | 單元測(cè)試 | 期末考試 | |
小張 | 70 | 90 | 80 |
小王 | 60 | 75 | _______ |
若按完成作業(yè)、單元檢測(cè)、期末考試三項(xiàng)成績(jī)按1:2:7的權(quán)重來確定學(xué)期總評(píng)成績(jī).
(1)請(qǐng)計(jì)算小張的學(xué)期總評(píng)成績(jī)?yōu)槎嗌俜郑?/span>
(2)小王在期末(期末成績(jī)?yōu)檎麛?shù))應(yīng)該最少考多少分才能達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】手機(jī)下載一個(gè)APP,繳納一定數(shù)額的押金,就能以每小時(shí)0.5到1元的價(jià)格解鎖一輛自行車任意騎行…最近的網(wǎng)紅非“共享單車”莫屬.共享單車為解決市民出行的“最后一公里”難題幫了大忙,人們?cè)谙硎芸萍歼M(jìn)步、共享經(jīng)濟(jì)帶來的便利的同時(shí),隨意停放、加裝私鎖、大卸八塊等毀壞單車的行為也層出不窮.某共享單車公司一月投入部分自行車進(jìn)入市場(chǎng),一月底發(fā)現(xiàn)損壞率不低于10%,二月初又投入1200輛進(jìn)入市場(chǎng),使可使用的自行車達(dá)到7500輛.
(1)一月份該公司投入市場(chǎng)的自行車至少有多少輛?
(2)二月份的損壞率達(dá)到20%,進(jìn)入三月份,該公司新投入市場(chǎng)的自行車比二月份增長(zhǎng)4a%,由于媒體的關(guān)注,毀壞共享單車的行為引起了一場(chǎng)國民素質(zhì)的大討論,三月份的損壞率下降a%,三月底可使用的自行車達(dá)到7752輛,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),頂點(diǎn)為點(diǎn).
(1)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;(用含有的代數(shù)式表示)
(2)連接.
①若平分,求二次函數(shù)的表達(dá)式;
②連接,若平分,求二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[問題提出]
在判定兩個(gè)三角形全等時(shí),除根據(jù)一般三角形全等判定定理外,還有"" 方法.類似的,我們對(duì)直角三角形相似的條件進(jìn)行探索。
(1) [提出猜想]
除根據(jù)一般三角形相似判定的條件外,請(qǐng)你提出類似于""的判定直角三角形相似的方法,并用文字描述為: .
(2) [初步思考]
其中,我們不妨將問題用符號(hào)語言表示為:如圖1,在和中,,若 ,則, 請(qǐng)給予證明.
(3) [深入研究]
若圖2中的,其他條件不變,兩個(gè)三角形是否相似?試?yán)靡陨咸骄康慕Y(jié)論解決問題,若相似請(qǐng)證明,若不相似,請(qǐng)畫出反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y=x2﹣2x與拋物線C2:y=ax2+bx開口大小相同、方向相反,它們相交于O,C兩點(diǎn),且分別與x軸的正半軸交于點(diǎn)B,點(diǎn)A,OA=2OB.
(1)求拋物線C2的解析式;
(2)在拋物線C2的對(duì)稱軸上是否存在點(diǎn)P,使PA+PC的值最小?若存在,求出點(diǎn)P的坐標(biāo),若不存在,說明理由;
(3)M是直線OC上方拋物線C2上的一個(gè)動(dòng)點(diǎn),連接MO,MC,M運(yùn)動(dòng)到什么位置時(shí),△MOC面積最大?并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(jí)(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請(qǐng)了部分同學(xué)參與問卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息解決下列問題:
(1)共有多少名同學(xué)參與問卷調(diào)查;
(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)全校共有學(xué)生1500人,請(qǐng)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點(diǎn)P,Q.
(1)求P點(diǎn)的坐標(biāo);
(2)若△POQ的面積為9,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在地面上豎直安裝著AB、CD、EF三根立柱,在同一時(shí)刻同一光源下立柱AB、CD形成的影子為BG與DH.
(1)填空:判斷此光源下形成的投影是: 投影.
(2)作出立柱EF在此光源下所形成的影子.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com