【題目】某校九年級學(xué)生某科目學(xué)期總評成績是由完成作業(yè)、單元檢測、期末考試三項(xiàng)成績構(gòu)成的,如果學(xué)期總評成績80分以上(含80分),則評定為“優(yōu)秀”,下表是小張和小王兩位同學(xué)的成績記錄:
完成作業(yè) | 單元測試 | 期末考試 | |
小張 | 70 | 90 | 80 |
小王 | 60 | 75 | _______ |
若按完成作業(yè)、單元檢測、期末考試三項(xiàng)成績按1:2:7的權(quán)重來確定學(xué)期總評成績.
(1)請計(jì)算小張的學(xué)期總評成績?yōu)槎嗌俜郑?/span>
(2)小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考多少分才能達(dá)到優(yōu)秀?
【答案】(1)小張的期末評價(jià)成績?yōu)?/span>81分.(2)最少考85分才能達(dá)到優(yōu)秀
【解析】
(1)直接利用加權(quán)平均數(shù)的定義求解可得;
(2)設(shè)小王期末考試成績?yōu)?/span>x分,根據(jù)加權(quán)平均數(shù)的定義列出不等式求出最小整數(shù)解即可.
解:(1)小張的期末評價(jià)成績?yōu)?/span>=81(分);
答:小張的期末評價(jià)成績?yōu)?/span>81分.
(2)設(shè)小王期末考試成績?yōu)?/span>x分,
根據(jù)題意,得:,
解得x≥84,
∴小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考85分才能達(dá)到優(yōu)秀.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點(diǎn)E是AD邊上的動(dòng)點(diǎn),從點(diǎn)A開始沿AD向D運(yùn)動(dòng).以BE為邊,在BE的上方作正方形BEFG,EF交DC于點(diǎn)H,連接CG、BH.請?zhí)骄浚?/span>
(1)線段AE與CG是否相等?請說明理由.
(2)若設(shè)AE=x,DH=y,當(dāng)x取何值時(shí),y最大?最大值是多少?
(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到AD的何位置時(shí),△BEH∽△BAE?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園讀詩詞誦經(jīng)典比賽”結(jié)束后,評委劉老師將此次所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖,部分信息如下圖:
扇形統(tǒng)計(jì)圖 頻數(shù)直方圖
(1)參加本次比賽的選手共有________人,參賽選手比賽成績的中位數(shù)在__________分?jǐn)?shù)段;補(bǔ)全頻數(shù)直方圖.
(2)若此次比賽的前五名成績中有名男生和名女生,如果從他們中任選人作為獲獎(jiǎng)代表發(fā)言,請利用表格或畫樹狀圖求恰好選中男女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是拋物線上兩點(diǎn),則y1<y2, 其中結(jié)論正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=10CM,弦長AC=6cm,∠ACB的平分線交⊙O于點(diǎn)D.
(1)求BC的長.
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù) y=ax2+bx+2 的圖象與 x 軸交于 A(﹣3,0),B(1,0)兩點(diǎn),與 y 軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的關(guān)系解析式 ,x 滿足什么值時(shí) y﹤0 ?
(2)點(diǎn) p 是直線 AC 上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn) P,使△ACP 面積最大?若存在,求出點(diǎn) P的坐標(biāo);若不存在,說明理由
(3)點(diǎn) M 為拋物線上一動(dòng)點(diǎn),在 x 軸上是否存在點(diǎn) Q,使以 A、C、M、Q 為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn) Q 的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知PA,PB分別與⊙O相切于點(diǎn)A,B,∠APB=80°,C為⊙O上一點(diǎn).
(1)如圖①,求∠ACB的大小;
(2)如圖②,AE為⊙O的直徑,AE與BC相交于點(diǎn)D.若AB=AD,求∠EAC的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線.
(1)當(dāng),時(shí),求拋物線與軸的交點(diǎn)個(gè)數(shù);
(2)當(dāng)時(shí),判斷拋物線的頂點(diǎn)能否落在第四象限,并說明理由;
(3)當(dāng)時(shí),過點(diǎn)的拋物線中,將其中兩條拋物線的頂點(diǎn)分別記為,,若點(diǎn),的橫坐標(biāo)分別是,,且點(diǎn)在第三象限.以線段為直徑作圓,設(shè)該圓的面積為,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+6經(jīng)過點(diǎn)A(﹣3,0)和點(diǎn)B(2,0),直線y=h(h為常數(shù),且0<h<6)與BC交于點(diǎn)D,與y軸交于點(diǎn)E,與AC交于點(diǎn)F.
(1)求拋物線的解析式;
(2)連接AE,求h為何值時(shí),△AEF的面積最大.
(3)已知一定點(diǎn)M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請求出h的值和點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com