【題目】在平面直角坐標系中,二次函數(shù) yax2bx2 的圖象與 x 軸交于 A(﹣3,0),B1,0)兩點,與 y 軸交于點C

1)求這個二次函數(shù)的關(guān)系解析式 x 滿足什么值時 y0 ?

(2) p 是直線 AC 上方的拋物線上一動點,是否存在點 P,使ACP 面積最大?若存在,求出點 P的坐標;若不存在,說明理由

3)點 M 為拋物線上一動點,在 x 軸上是否存在點 Q,使以 A、C、M、Q 為頂點的四邊形是平行四邊形?若存在,直接寫出點 Q 的坐標;若不存在,說明理由.

【答案】1, ;(2P;(3

【解析】

1)將點A(﹣3,0),B1,0)帶入yax2bx2得到二元一次方程組,解得即可得出函數(shù)解析式;又從圖像可以看出x 滿足什么值時 y0;

2)設出P點坐標,利用割補法將ACP 面積轉(zhuǎn)化為,帶入各個三角形面積算法可得出m之間的函數(shù)關(guān)系,分析即可得出面積的最大值;

3)分兩種情況討論,一種是CM平行于x軸,另一種是CM不平行于x軸,畫出點Q大概位置,利用平行四邊形性質(zhì)即可得出關(guān)于點Q坐標的方程,解出即可得到Q點坐標.

解:(1)將A(﹣30),B1,0)兩點帶入yax2bx2可得:

解得:

∴二次函數(shù)解析式為.

由圖像可知,當y0;

綜上:二次函數(shù)解析式為,當y0;

2)設點P坐標為,如圖連接PO,作PMx軸于M,PNy軸于N.

PM=PN=,AO=3.

時,,所以OC=2

,

∴函數(shù)有最大值,

時,有最大值,

此時;

所以存在點,使ACP 面積最大.

3)存在,

假設存在點Q使以 A、C、M、Q 為頂點的四邊形是平行四邊形

①若CM平行于x軸,如下圖,有符合要求的兩個點此時=

CMx軸,

∴點M、點C0,2)關(guān)于對稱軸對稱,

M(﹣2,2),

CM=2.

=;

②若CM不平行于x軸,如下圖,過點MMGx軸于點G

易證△MGQ≌△COA,得QG=OA=3,MG=OC=2,即.

Mx,﹣2),則有,解得:.

QG=3,,

綜上所述,存在點P使以 AC、MQ 為頂點的四邊形是平行四邊形,

Q點坐標為:

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知邊長為1的正方形ABCD,在BC邊上有一動點E,連接AE,作EFAE,交CD邊于點F.設BEx,CFy

1)寫出yx的函數(shù)關(guān)系式.

2CF的長可能等于嗎?請說明理由.

3)點E在什么位置時,CF的長為?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點O△ABC的外心,作正方形OCDE,下列說法:O△AEB的外心;O△ADC的外心;O△BCE的外心;O△ADB的外心.其中一定不成立的說法是( 。

A.②④B.①③C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是(  )

A. 60cm2 B. 50cm2 C. 40cm2 D. 30cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級學生某科目學期總評成績是由完成作業(yè)、單元檢測、期末考試三項成績構(gòu)成的,如果學期總評成績80分以上(含80分),則評定為優(yōu)秀,下表是小張和小王兩位同學的成績記錄:

完成作業(yè)

單元測試

期末考試

小張

70

90

80

小王

60

75

_______

若按完成作業(yè)、單元檢測、期末考試三項成績按127的權(quán)重來確定學期總評成績.

1)請計算小張的學期總評成績?yōu)槎嗌俜郑?/span>

2)小王在期末(期末成績?yōu)檎麛?shù))應該最少考多少分才能達到優(yōu)秀?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年夏季全國各地總有未成年人因溺水而喪失生命,令人痛心疾首.今年某校為確保學生安全,開展了遠離溺水珍愛生命的防溺水安全知識競賽.現(xiàn)從該校七、八年級中各隨機抽取10名學生的競賽成績(百分制)進行整理、描述和分析(成績得分用x表示,共分成四組:A80≤x85,B85≤x90,C90≤x95,D95≤x≤100),下面給出了部分信息:七年級10名學生的競賽成績是:9980,9986,9996,90,100,89,82;八年級10名學生的競賽成績在C組中的數(shù)據(jù)是:94,90,94.

七、八年級抽取的學生競賽成績統(tǒng)計表

年級

七年級

八年級

平均數(shù)

92

92

中位數(shù)

93

b

眾數(shù)

c

100

方差

52

50.4

根據(jù)以上信息,解答下列問題:

1)直接寫出上述圖表中ab,c的值;

2)根據(jù)以上數(shù)據(jù),你認為該校七、八年級中哪個年級學生掌握防溺水安全知識較好?請說明理由(一條理由即可);

3)該校七、八年級共720人參加了此次競賽活動,估計參加此次競賽活動成績優(yōu)秀(x≥90)的學生人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax32+a≠0)過點C0,4),頂點為M,與x軸交于AB兩點.如圖所示以AB為直徑作圓,記作⊙D

1)試判斷點C與⊙D的位置關(guān)系;

2)直線CM與⊙D相切嗎?請說明理由;

3)在拋物線上是否存在一點E,能使四邊形ADEC為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點E在⊙O上,∠EAB的平分線交⊙O于點C,過點C作AE的垂線,垂足為D,直線DC與AB的延長線交于點P.

(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;

(2)若tan∠P=,AD=6,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線C1yx22x與拋物線C2yax2+bx開口大小相同、方向相反,它們相交于O,C兩點,且分別與x軸的正半軸交于點B,點A,OA2OB

1)求拋物線C2的解析式;

2)在拋物線C2的對稱軸上是否存在點P,使PA+PC的值最。咳舸嬖,求出點P的坐標,若不存在,說明理由;

3M是直線OC上方拋物線C2上的一個動點,連接MO,MC,M運動到什么位置時,MOC面積最大?并求出最大面積.

查看答案和解析>>

同步練習冊答案