【題目】低碳環(huán)保你我同行兩年來,揚州市區(qū)的公共自行車給市民出行帶來切實方便電視臺記者在某區(qū)街頭隨機選取了市民進行調(diào)查調(diào)查的問題是您大概多久使用一次公共自行車?將本次調(diào)查結(jié)果歸為四種情況:A每天都用;B經(jīng)常使用;C偶爾使用;D從未使用將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計圖:

根據(jù)圖中的信息,解答下列問題:

1本次活動共有 位市民參與調(diào)查

2補全條形統(tǒng)計圖;

3根據(jù)統(tǒng)計結(jié)果若該區(qū)有46萬市民,請估算每天都用公共自行車的市民約有多少人?

【答案】1200;

2圖形見解析;

3估計每天都用公共自行車的市民約為23萬人

【解析】

試題分析:1由從未使用的有30人,占15%,用30去除以15%即可得;

根據(jù)扇形圖可得A、B、C的人數(shù)用200去乘以百分比其中A的百分比=1-28%-52%-15%=5%),然后補全條形圖即可;

用46萬乘以A所占的百分比——5%即可得

試題解析:1200;

2如圖

346×5%=23萬人).答:估計每天都用公共自行車的市民約為23萬人

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為3的正方形OABC的兩邊在兩坐標軸上,拋物線y=-x2bxc經(jīng)過點A,C,與x軸交于另一點D,P為第一象限內(nèi)拋物線上一點,過P點作y軸的平行線交x 軸于點Q,交AC于點E.

(1)求拋物線解析式及點D的坐標

(2)E點作x軸的平行線交AB于點F,若以P,E,F為頂點的三角形與ODC相似,求點P坐標;

(3)P點作PHACH,是否存在點P使PEH的周長取得最大值,若存在,請求出點P坐標及PEH周長的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗室里,水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為121,,用兩個相同的管子在容器的5cm高度處連通(即管子底端離容器底5cm),現(xiàn)三個容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水1分鐘,乙的水位上升cm,則開始注入 分鐘的水量后,甲與乙的水位高度之差是05cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)分別填人相應(yīng)的集合里.

5,﹣2.626626662…,0,﹣π,﹣,0.12,﹣(﹣6).

1)正數(shù)集合:{____________________};

2)無理數(shù)集合:{___________________ }

3)負整數(shù)集合:{__________________}

4)分數(shù)集合:{___________________ }

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)△AHO的周長為12;(2) 反比例函數(shù)的解析式為y=一次函數(shù)的解析式為y=-x+1.

【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案;

2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

試題解析:(1)由OH=3,tan∠AOH=,得

AH=4.即A-4,3).

由勾股定理,得

AO==5

△AHO的周長=AO+AH+OH=3+4+5=12;

2)將A點坐標代入y=k≠0),得

k=-4×3=-12,

反比例函數(shù)的解析式為y=;

y=-2時,-2=,解得x=6,即B6,-2).

A、B點坐標代入y=ax+b,得

,

解得,

一次函數(shù)的解析式為y=-x+1

考點:反比例函數(shù)與一次函數(shù)的交點問題.

型】解答
結(jié)束】
25

【題目】如圖,已知點A、C分別在∠GBE的邊BGBE上,且AB=AC,AD∥BE,∠GBE的平分線與AD交于點D,連接CD

求證:①AB=AD

②CD平分∠ACE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進價是200/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當售價是400/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).

1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ly=﹣x+4分別與x軸、y軸交于點A,B,雙曲線k0,x0)與直線l不相交,E為雙曲線上一動點,過點EEGx軸于點GEFy軸于點F,分別與直線l交于點C,D,且∠COD45°,則k_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面內(nèi)給定射線OA,射線OB及∠MON,給出如下定義:若由射線OA、OB組成的∠AOB的平分線OT落在∠MON的內(nèi)部或邊OM、ON上,則稱射線OA與射線OB關(guān)于∠MON內(nèi)含對稱.例如,圖1中射線OA與射線OB關(guān)于∠MON內(nèi)含對稱

已知:如圖2,在平面內(nèi),∠AOM=10°,∠MON=20°

1)若有兩條射線,的位置如圖3所示,且,,則在這兩條射線中,與射線OA關(guān)于∠MON內(nèi)含對稱的射線是_____________

2)射線OC是平面上繞點O旋轉(zhuǎn)的一條動射線,若射線OA與射線OC關(guān)于∠MON內(nèi)含對稱,設(shè)∠COM=x°,求x的取值范圍;

3)如圖4,∠AOE=EOH=2FOH=20°,現(xiàn)將射線OH繞點O以每秒的速度順時針旋轉(zhuǎn),同時將射線OEOF繞點O都以每秒的速度順時針旋轉(zhuǎn).設(shè)旋轉(zhuǎn)的時間為t秒,且.若∠FOE的內(nèi)部及兩邊至少存在一條以O為頂點的射線與射線OH關(guān)于∠MON內(nèi)含對稱,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃購買若干臺電腦,現(xiàn)從兩家商場了解到同一種型號的電腦報價均為6000元,并且多買都有一定的優(yōu)惠.各商場的優(yōu)惠條件如下表所示:

商場

優(yōu)惠條件

甲商場

第一臺按原價收費,其余的每臺優(yōu)惠25%

乙商場

每臺優(yōu)惠20%

(1)設(shè)學校購買臺電腦,選擇甲商場時,所需費用為元,選擇乙商場時,所需費用為元,請分別求出之間的關(guān)系式.

(2)什么情況下,兩家商場的收費相同?什么情況下,到甲商場購買更優(yōu)惠?什么情況下,到乙商場購買更優(yōu)惠?

(3)現(xiàn)在因為急需,計劃從甲乙兩商場一共買入10臺電腦,已知甲商場的運費為每臺50元,乙商場的運費為每臺60元,設(shè)總運費為元,從甲商場購買臺電腦,在甲商場的庫存只有4臺的情況下,怎樣購買,總運費最少?最少運費是多少?

查看答案和解析>>

同步練習冊答案