【題目】如圖,已知邊長為2的正三角形ABC沿著直線l滾動.

(1)當(dāng)△ABC滾動一周到△A1B1C1的位置,此時A點運動的路程為   ;約為  ;(精確到0.1π3.14)

(2)設(shè)△ABC滾動240°時,C點的位置為C′,△ABC滾動480°時,A點的位置為A′.請你利用三角函數(shù)中正切的兩角和公式tan(α+β)(tanα+tanβ)÷(1tanαtanβ),求出∠CAC+CAA′的度數(shù).

【答案】(1)8.37758;8.4(2)CAC+CAA′=30°.

【解析】

(1)由圖形可以看出,ABC滾動的軌跡正好為兩個半徑為2的三分之一的圓周長;
(2)先求出正三角形的高,再利用三角函數(shù)求出tanCACtanCAA的值,然后通過等量代換求出∠CAC+∠CAA的度數(shù).

(1)當(dāng)ABC滾動一周到A1B1C1的位置,此時A點運動的路徑為兩個半徑為2的三分之一的圓周長,

A點的路程長為:2××2×3.14×2=8.37758;

約為8.4.

(2)設(shè)ABC滾動240°時,C點的位置為CABC滾動480°時,A點的位置為A

∵正ABC的邊長為2

∴正ABC的高為

tanCAC

tanCAA

所以:由公式tan(αβ)(tanαtanβ)÷(1﹣tanαtanβ)

得:tan(CAC+∠CAA′)

(tanCACtanCAA′)÷(1﹣tanCAC′tanCAA′)

()÷(1﹣×)

所以:∠CAC+∠CAA=30°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線ykx+bk0)與拋物線yax24ax+3a的對稱軸交于點Am,﹣1),點A關(guān)于x軸的對稱點恰為拋物線的頂點.

1)求拋物線的對稱軸及a的值;

2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記直線ykx+bk0)與拋物線圍成的封閉區(qū)域(不含邊界)為W

當(dāng)k1時,直接寫出區(qū)域W內(nèi)的整點個數(shù);

若區(qū)域W內(nèi)恰有3個整點,結(jié)合函數(shù)圖象,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學(xué)支教.

(1)若從甲、乙兩校報名的教師中分別隨機選1名,則所選的2名教師性別相同的概率是

(2)若從報名的4名教師中隨機選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的矩形ABCD中,EAB的中點,有一圓過CD、E三點,且此圓分別與AD、BC相交于P、Q兩點.甲、乙兩人想找到此圓的圓心O,其作法如下:

() 作∠DEC的角平分線L,作DE的中垂線,交LO點,則O即為所求;

() 連接PC、QD,兩線段交于一點O,則O即為所求.

對于甲、乙兩人的作法,下列判斷何者正確?(  )

A. 兩人皆正確 B. 兩人皆錯誤

C. 甲正確,乙錯誤 D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O的半徑為2,弦BC的長為,A為弦BC所對優(yōu)弧上任意一點(B,C兩點除外).

1)求BAC的度數(shù);

2)求ABC面積的最大值.

(參考數(shù)據(jù): ,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用圖象法求方程的解,體現(xiàn)了數(shù)形結(jié)合的方法,它是將方程的解看成兩個函數(shù)圖象交點的橫坐標(biāo).若關(guān)于x的方程x2+a﹣=0(a0)只有一個整數(shù)解,則a的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(4,0)、B(1,0)、C(0,3)三點,直線y=mx+n經(jīng)過A(4,0)、C(0,3)兩點.

(1)寫出方程ax2+bx+c=0的解;

(2)若ax2+bx+c>mx+n,寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過點,.軸上一動點,過點且垂直于軸的直線分別交直線及拋物線于點,.

1)填空:點的坐標(biāo)為_________,拋物線的解析式為_________;

2)當(dāng)點在線段上運動時(不與點,重合),

①當(dāng)為何值時,線段最大值,并求出的最大值;

②求出使為直角三角形時的值;

3)若拋物線上有且只有三個點到直線的距離是,請直接寫出此時由點,,,構(gòu)成的四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟南某中學(xué)在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息,回答下列問題:

(l)楊老師采用的調(diào)查方式是   (填“普查”或“抽樣調(diào)查”);

(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù)   

(3)請估計全校共征集作品的什數(shù).

(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

查看答案和解析>>

同步練習(xí)冊答案