【題目】電腦系統(tǒng)中有個“掃雷”游戲,要求游戲者標出所有的雷,游戲規(guī)則:一個方塊下面最多埋一個雷,如果無雷,掀開方塊下面就標有數(shù)字,提醒游戲者此數(shù)字周圍的方塊(最多八個)中雷的個數(shù)(實際游戲中,0通常省略不標,為方便大家識別與印刷,我把圖乙中的0都標出來了,以示與未掀開者的區(qū)別),如圖甲中的“3”表示它的周圍八個方塊中僅有3個埋有雷.圖乙是張三玩游戲中的局部,圖中有4個方塊己確定是雷(方塊上標有旗子),則圖乙第一行從左數(shù)起的七個方塊中(方塊上標有字母),能夠確定一定是雷的有
.(請?zhí)钊敕綁K上的字母)
【答案】B、D、F、G.
【解析】
根據(jù)掃雷規(guī)則逐個判斷.
圖乙中最左邊的“1”和最右邊的“1”,可得如下推斷:
由第三行最左邊的“1”,可得它的上方必定是雷.
結(jié)合B下方的“2”,可得最左邊的A、B對應(yīng)的方格中有一個雷;
同理可得最右邊的“4”周圍4個方格中有3個雷,中間D、E對應(yīng)方格中有一個雷;
由于B下方的“2”和第二行最右邊的“2”,它們周圍的雷已經(jīng)夠數(shù),
所以C對應(yīng)的方格肯定不是雷.
進行下一步推理:
因為C對應(yīng)的方格不是雷,所以C下方“2”的左上、右上的方格,即B、D都是雷;
而B下方的“2”的周圍的雷也已經(jīng)夠數(shù),所以A對應(yīng)的方格也不是雷.
因為D下方的“2”,它的周圍的雷已經(jīng)夠數(shù),可得E對應(yīng)的方格不是雷,
根據(jù)F下方的“4”周圍應(yīng)該有4個雷,結(jié)合E不是雷,可得F、G對應(yīng)的方格都是雷.
綜上所述,A、C、E對應(yīng)的方格不是雷,且B、D、F、G對應(yīng)的方格是雷.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統(tǒng)計圖.
請根據(jù)圖中信息,解決下列問題:
(1)兩個班共有女生多少人?
(2)將頻數(shù)分布直方圖補充完整;
(3)求扇形統(tǒng)計圖中部分所對應(yīng)的扇形圓心角度數(shù);
(4)身高在的5人中,甲班有3人,乙班有2人,現(xiàn)從中隨機抽取兩人補充到學(xué)校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標系中,二次函數(shù)的圖象與軸交于點,與軸交于點,點的坐標為,點的坐標為.
(1)如圖1,分別求的值;
(2)如圖2,點為第一象限的拋物線上一點,連接并延長交拋物線于點,,求點的坐標;
(3)在(2)的條件下,點為第一象限的拋物線上一點,過點作軸于點,連接、,點為第二象限的拋物線上一點,且點與點關(guān)于拋物線的對稱軸對稱,連接,設(shè),,點為線段上一點,點為第三象限的拋物線上一點,分別連接,滿足,,過點作的平行線,交軸于點,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,OB=1,∠OBC=60°.
(1)如圖1,求直線BC的解析式;
(2)如圖1,線段AC上方拋物線上有一動點P,PD⊥x軸于點H,交線段AC于點D,直線BG∥AC,交拋物線于點G,點F是直線BC上一動點,FE∥BC交AC于點E,點Q是點A關(guān)于直線BG的對稱點,連接PE、QF.當線段PD取最大值時,求PE+EF+QF的最小值及點E的坐標;
(3)如圖2,將△BOC繞點O逆時針旋轉(zhuǎn)至△B′O C′的位置,點B、C的對應(yīng)點分別為點B′、C′,點B′恰好落在BC上.將△B′O C′沿直線AC平移,得到△B′′O ′ C′′,點B′、C′、O的對應(yīng)點分別為點B′′、C′′、O ′,連接B ′ B′′、B ′C′′,△B ′B′′C′′是否能為等腰三角形?若能,請直接寫出所有符合條件的C′′的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O中,AC為直徑,MA、MB分別切⊙O于點A、B.
(Ⅰ)如圖①,若∠BAC=250,求∠AMB的大。
(Ⅱ)如圖②,過點B作BD⊥AC于點E,交⊙O于點D,若BD=MA,求∠AMB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在矩形ABCD中,E為邊BC上的一點,AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點,EF=7,連接AF.如圖1,現(xiàn)有一張硬紙片△GMN,∠NGM=900,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點N與點E重合,點G在線段DE上.如圖2,△GMN從圖1的位置出發(fā),以每秒1個單位的速度沿EB向點B勻速移動,同時,點P從A點出發(fā),以每秒1個單位的速度沿AD向點D勻速移動,點Q為直線GN與線段AE的交點,連接PQ.當點N到達終點B時,△GMNP和點同時停止運動.設(shè)運動時間為t秒,解答問題:
(1)在整個運動過程中,當點G在線段AE上時,求t的值;
(2)在整個運動過程中,是否存在點P,使△APQ是等腰三角形,若存在,求出t的值;若不存在,說明理由;
(3)在整個運動過程中,設(shè)△GMN與△AEF重疊部分的面積為S,請直接寫出S與t的函數(shù)關(guān)系式以及自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AC為直徑的O恰為△ABC的外接圓,∠ABC的平分線交O于點D,過點D作DE∥AC交BC的延長線于點E
(1)求證:DE是⊙O的切線;
(2)若AB=4,BC=2,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級一班開展了“讀一本好書”的活動,班委會對學(xué)生閱讀書籍的情況進行了問卷調(diào)查,問卷設(shè)置了“小說”、“戲劇”、“散文”、“其他”四個類別,每位同學(xué)僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.根據(jù)圖表提供的信息,回答下列問題:
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | m | 1 |
(1)計算m= ;
(2)在扇形統(tǒng)計圖中,“其他”類所占的百分比為 ;
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團,請用畫樹狀圖或列表的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com