【題目】“面積法”是指利用圖形面積間的等量關(guān)系尋求線段間等量關(guān)系的一種方法.例如:在△ABC中,ABAC,點(diǎn)PBC所在直線上一個(gè)動(dòng)點(diǎn),過P點(diǎn)作PDABPEAC,垂足分別為DE,BF為腰AC上的高.如圖,當(dāng)點(diǎn)P在邊BC上時(shí),我們可得如下推理:

SABCSABP+SACP

ACBFABPD+ACPE

ABAC

ACBFACPD+PE

BFPD+PE

1)(變式)如圖,在上例的條件下,當(dāng)點(diǎn)P運(yùn)動(dòng)到BC的延長(zhǎng)線上時(shí),試探究BF、PDPE之間的關(guān)系,并說明理由.

2)(遷移)如圖,點(diǎn)P是等邊△ABC內(nèi)部一點(diǎn),作PDABPEBC、PFAC,垂足分別為D、E、F,若PD1PE2,PF4.求△ABC的邊長(zhǎng).

3)(拓展)若點(diǎn)P是等邊△ABC所在平面內(nèi)一點(diǎn),且點(diǎn)P到三邊所在直線的距離分別為23、6.請(qǐng)直接寫出等邊△ABC的高的所有可能

【答案】1BFPDPE,理由見解析;(2;(311,7,5,1

【解析】

1)如圖②,連接AP,根據(jù)SABCSABPSACP列式,即可得到結(jié)論;

2)如圖③,過AAHBCH,連接PA,PB,PC,根據(jù)面積法求出AHPDPEPF7,然后根據(jù)等邊三角形的性質(zhì)得到CHBCAC,在RtAHC中利用勾股定理構(gòu)建方程即可得到結(jié)論;

3)如圖④,設(shè)等邊ABC的高為h,點(diǎn)PABC的三邊的距離為h12,h23h36,分三種情況討論即可得到結(jié)論.

解:(1BFPDPE

如圖②,連接AP,

SABCSABPSACP,

ACBFABPDACPE

ABAC,

BFPDPE;

2)如圖③,過AAHBCH,連接PA,PBPC,

SABCSABP+SACP+SBCP,即AHBCPDAB+PFAC+PEBC,

∵△ABC是等邊三角形,

ABACBC

AHPD+PE+PF7,

ABAC,AHBC,

CHBCAC,

RtAHC中,∠AHC90°

AH2+CH2AC2,即49AC2AC2,

AC;

3)如圖④,設(shè)等邊ABC的高為h,點(diǎn)PABC的三邊的距離為h12h23,h36

當(dāng)Pi區(qū)域時(shí),由(2)可得hh1+h2+h32+3+611

當(dāng)Piii區(qū)域時(shí),如圖④-1PFh12,PEh23,PGh36,連接

SABCSPBCSACPSABPhBCPGBCPEACPFAB,

ABACBC,

hh3h2h11,

當(dāng)Pii區(qū)域時(shí),同理可得hh1+h3h22+635hh2+h3h13+627,

綜上所述,等邊ABC的高的所有可能的值為11,1,7,5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的一邊等于4cm,一邊等于9cm,那么它的周長(zhǎng)等于_____cm;若等腰三角形的一個(gè)角為70°,則它的另兩個(gè)角是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《孫子算經(jīng)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,約成書于四、五世紀(jì).現(xiàn)在傳本的《孫子算經(jīng)》共三卷.卷上敘述算籌記數(shù)的縱橫相間制度和籌算乘除法則;卷中舉例說明籌算分?jǐn)?shù)算法和籌算開平方法;卷下記錄算題,不但提供了答案,而且還給出了解法.其中記載:“今有木,不知長(zhǎng)短.引繩度之,余繩四尺五,屈繩量之,不足一尺.問木長(zhǎng)幾何?”

譯文:“用一根繩子去量一根長(zhǎng)木,繩子還剩余4.5,將繩子對(duì)折再量長(zhǎng)木,長(zhǎng)木還剩余1,問長(zhǎng)木長(zhǎng)多少尺?”

請(qǐng)解答上述問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩塊完全一樣的含30°角的直角三角板,將它們重疊在一起并繞其較長(zhǎng)直角邊的中點(diǎn)M轉(zhuǎn)動(dòng),使上面一塊三角板的斜邊剛好過下面一塊三角板的直角頂點(diǎn)C.已知AC4,則這兩塊直角三角板頂點(diǎn)A、A之間的距離等于___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=∠ADC90°,ABAD,EAC的中點(diǎn).

1)求證:∠EBD=∠EDB

2)若∠BED120°,試判斷△BDC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在截面為半圓形的水槽內(nèi)裝有一些水,如圖水面寬AB6分米,如果再注入一些水后,水面上升1分米,此時(shí)水面寬度變?yōu)?/span>8分米。則該水槽截面半徑為(

A. 3分米 B. 4分米 C. 5分米 D. 10分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,H是△ABC的高AD,BE的交點(diǎn),且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),點(diǎn)在該函數(shù)的圖象上,點(diǎn)軸、軸的距離分別為、.設(shè),下列結(jié)論中:

沒有最大值;②沒有最小值;③時(shí),的增大而增大;

④滿足的點(diǎn)有四個(gè).其中正確結(jié)論的個(gè)數(shù)有(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在邊BC上,∠1=2,∠C=AED,BC=DE

(1)求證:AB=AD

(2)若∠C=70°,求∠BED的度數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案