【題目】如圖,兩塊完全一樣的含30°角的直角三角板,將它們重疊在一起并繞其較長直角邊的中點M轉(zhuǎn)動,使上面一塊三角板的斜邊剛好過下面一塊三角板的直角頂點C.已知AC4,則這兩塊直角三角板頂點AA之間的距離等于___________

【答案】2

【解析】

連接AA',由旋轉(zhuǎn)的性質(zhì)可得CM=C'M=2,AM=A'M=2,可證AMA'是等邊三角形,即可求AA'的長.

解:如圖,連接AA',

∵點MAC中點,

AM=CM= AC=2

由旋轉(zhuǎn)性質(zhì)可知,CM=C'M,AM=A'M

A'M=MC=AM=2,

∴∠C'A'B'=A'CM=30°

∴∠AMA'=C'A'B'+MCA'=60°,且AM=A'M

∴△AMA'是等邊三角形

A'A=AM=2

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點M,AEBC交于點N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請寫序號,少選、錯選均不得分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦網(wǎng)絡(luò)安全知識答題競賽,七、八年級根據(jù)初賽成績各選出5名選手組成代表隊參加決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

平均分(分)

中位數(shù)(分)

眾數(shù)(分)

方差(分2

七年級

a

85

b

S七年級2

八年級

85

c

100

160

1)根據(jù)圖示填空:a   b   ,c   ;

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個代表隊的決賽成績較好?

3)計算七年級代表隊決賽成績的方差S七年級2,并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)我最喜愛的體育項目進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有_____名學(xué)生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,乒乓球部分所對應(yīng)的圓心角度數(shù)為_____;

(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的網(wǎng)格紙中,建立了平面直角坐標(biāo)系,點,點,

以點為對稱中心,畫出,使關(guān)于點對稱,并寫出下列點的坐標(biāo):________,________;

多邊形的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決樓房之間的擋光問題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時不能擋光.如圖,某舊樓的一樓窗臺高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時陽光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請問新建樓房最高多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“面積法”是指利用圖形面積間的等量關(guān)系尋求線段間等量關(guān)系的一種方法.例如:在△ABC中,ABAC,點PBC所在直線上一個動點,過P點作PDAB、PEAC,垂足分別為D、EBF為腰AC上的高.如圖,當(dāng)點P在邊BC上時,我們可得如下推理:

SABCSABP+SACP

ACBFABPD+ACPE

ABAC

ACBFACPD+PE

BFPD+PE

1)(變式)如圖,在上例的條件下,當(dāng)點P運動到BC的延長線上時,試探究BFPD、PE之間的關(guān)系,并說明理由.

2)(遷移)如圖,點P是等邊△ABC內(nèi)部一點,作PDAB、PEBC、PFAC,垂足分別為D、EF,若PD1,PE2,PF4.求△ABC的邊長.

3)(拓展)若點P是等邊△ABC所在平面內(nèi)一點,且點P到三邊所在直線的距離分別為2、36.請直接寫出等邊△ABC的高的所有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C,D在⊙O上,且AB=6,∠CAB=30°

求:(1)求∠ADC的度數(shù);

(2)如果OE⊥AC,垂足為E,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個圖形成中心對稱,則下列說法:

對應(yīng)點的連線一定經(jīng)過對稱中心;

這兩個圖形的形狀和大小完全相同;

這兩個圖形的對應(yīng)線段一定互相平行;

將一個圖形圍繞對稱中心旋轉(zhuǎn)后必與另一個圖形重合.其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案