【題目】如圖,已知AB是⊙O的直徑,點C,D在⊙O上,且AB=6,∠CAB=30°
求:(1)求∠ADC的度數(shù);
(2)如果OE⊥AC,垂足為E,求OE的長.
科目:初中數(shù)學 來源: 題型:
【題目】折疊圓心為、半徑為的圓形紙片,使圓周上的某一點與圓心重合.對圓周上的每一點,都這樣折疊紙片,從而都有一條折痕.那么,所有折痕所在直線上點的全體為( )
A. 以為圓心、半徑為的圓周 B. 以為圓心、半徑為的圓周
C. 以為圓心、半徑為的圓內(nèi)部分 D. 以為圓心、半徑為的圓周及圓外部分
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩塊完全一樣的含30°角的直角三角板,將它們重疊在一起并繞其較長直角邊的中點M轉動,使上面一塊三角板的斜邊剛好過下面一塊三角板的直角頂點C.已知AC=4,則這兩塊直角三角板頂點A、A′之間的距離等于___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在截面為半圓形的水槽內(nèi)裝有一些水,如圖水面寬AB為6分米,如果再注入一些水后,水面上升1分米,此時水面寬度變?yōu)?/span>8分米。則該水槽截面半徑為( )
A. 3分米 B. 4分米 C. 5分米 D. 10分米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,H是△ABC的高AD,BE的交點,且DH=DC,則下列結論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2-x+c(a≠0)的圖象與x軸交于A、B兩點,與y軸交于點C(0,-2),已知B點坐標為(4,0)
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;
(3)若點M是線段BC下方的拋物線上一點,記點M到線段BC的距離為d,當d取最大值時,求出此時M點的坐標;
(4)若點P是拋物線上一點,點E是直線y=-x+1上的動點,是否存在點P、E,使以點A,點B,點P,點E為頂點的四邊形是平行四邊形?若存在,請直接寫出點E坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),點在該函數(shù)的圖象上,點到軸、軸的距離分別為、.設,下列結論中:
①沒有最大值;②沒有最小值;③時,隨的增大而增大;
④滿足的點有四個.其中正確結論的個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在規(guī)格為8×8的邊長為1個單位的正方形網(wǎng)格中(每個小正方形的邊長為1),△ABC的三個頂點都在格點上,且直線m、n互相垂直.
(1)畫出△ABC關于直線n的對稱圖形△A′B′C′;
(2)直線m上存在一點P,使△APB的周長最;
①在直線m上作出該點P;(保留畫圖痕跡)
②△APB的周長的最小值為 .(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.
(1)求∠CBE的度數(shù);
(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com