【題目】如圖①,OP為一墻面,它與地面OQ垂直,有一根木棒AB如圖放置,點(diǎn)C是它的中點(diǎn),現(xiàn)在將木棒的A點(diǎn)在OP上由A點(diǎn)向下滑動(dòng),點(diǎn)B由O點(diǎn)向OQ方向滑動(dòng),直到AB橫放在地面為止.
(1)在AB滑動(dòng)過(guò)程中,點(diǎn)C經(jīng)過(guò)的路徑可以用下列哪個(gè)圖象來(lái)描述( )
(2)若木棒長(zhǎng)度為2m,如圖②射線OM與地面夾角∠MOQ=60°,當(dāng)AB滑動(dòng)過(guò)程中,與OM并于點(diǎn)D,分別求出當(dāng)AD= 、AD=1、AD= 時(shí),OD的值.
(3)如圖③,是一個(gè)城市下水道,下水道入口寬40cm,下水道水平段高度為40cm,現(xiàn)在要想把整根木棒AB通入下水道水平段進(jìn)行工作,那么這根木棒最長(zhǎng)可以是(cm)(直接寫出結(jié)果,結(jié)果四舍五入取整數(shù)).
【答案】
(1)甲
(2)解:過(guò)D作DH⊥OP于H,設(shè)DH=a,在Rt△OHD中,
∵∠AOD=90°﹣600=300,
∴OD=2a,OH= a,
∵DH⊥OA,OQ⊥OA,
∴DH∥QO,
∴ = ,
當(dāng)AD= 時(shí),BD= ,
∴ = ,
∴AH= a,
在Rt△AHD中,
∵AH2+DH2=AD2,
∴ a2+a2= ,
解得a= ,OD= ,
當(dāng)AD=1時(shí),BD=1,
∴ = ,
∴AH= a,
在Rt△AHD中,∵AH2+DH2=AD2,
∴3a2+a2=1,
解得a= ,OD=1,
當(dāng)AD= 時(shí),BD= ,
∴ = ,
∴AH=2 a,
在Rt△AHD中,∵AH2+DH2=AD2,
∴12a2+a2= ,
解得a= ,OD=
(3)113
【解析】解:(1)∵點(diǎn)C是AB的中點(diǎn),
∴OC= AB,
∴點(diǎn)C的運(yùn)動(dòng)軌跡是以O(shè)為圓心, AB長(zhǎng)為半徑的圓弧,經(jīng)過(guò)的路程的 圓周.
故選甲.(3)由題意當(dāng)?shù)妊苯侨切蔚闹苯沁厼?0cm時(shí),斜邊為 ≈113cm,
所以這根木棒最長(zhǎng)可以是113cm.
所以答案是113cm.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似三角形的性質(zhì)的相關(guān)知識(shí),掌握對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c是△ABC的三邊,若a,b,c滿足a2-6a+b2-8b++25=0,則△ABC是_____________三角形;若a,b,c滿足a2+b2+c2-ab-bc-ac=0,則△ABC是_________三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】遂寧市明星水利為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來(lái)水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi),為更好地做決策,自來(lái)水公司隨機(jī)抽取部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括最大值但不包括最小值),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問(wèn)題:
(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補(bǔ)全左側(cè)統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中“25噸~30噸”部分的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.
(1)求證:AB=AC;
(2)若DC=4,∠DAC=30°,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“端午節(jié)”所示我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗,我市某食品廠為了解市民對(duì)去年銷售較好的肉餡棕、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不用口味粽子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請(qǐng)根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè),用列表或畫樹(shù)狀圖的方法,求他第二個(gè)恰好吃到的是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)GH型產(chǎn)品由4個(gè)G型裝置和3個(gè)H型裝置配套組成.工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置.工廠將所有工人分成兩組同時(shí)開(kāi)始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.
(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請(qǐng)列出二元一次方程組解答此問(wèn)題.
(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G型裝置的加工,且每人每天只能加工4個(gè)G型裝置.1.設(shè)原來(lái)每天安排x名工人生產(chǎn)G型裝置,后來(lái)補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)2.請(qǐng)問(wèn)至少需要補(bǔ)充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△AOB中,AO=BO=2,點(diǎn)A在x軸上,OB與x軸的夾角為45°;
(1)求直線AB、OB的解析式;
(2)若將△AOB沿著x軸翻折再向右平移兩個(gè)單位求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一張寬為6cm的平行四邊形紙帶ABCD如圖1所示,AB=10cm,小明用這張紙帶將底面周長(zhǎng)為10cm直三棱柱紙盒的側(cè)面進(jìn)行包貼(要求包貼時(shí)沒(méi)有重疊部分).小明通過(guò)操作后發(fā)現(xiàn)此類包貼問(wèn)題可將直三棱柱的側(cè)面展開(kāi)進(jìn)行分析.
(1)若紙帶在側(cè)面纏繞三圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則紙帶AD的長(zhǎng)度為 cm;
(2)若AD=100cm,紙帶在側(cè)面纏繞多圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則這個(gè)直三棱柱紙盒的高度是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知兩點(diǎn)A(3,m),B(2m,4),且A和B到x軸距離相等,求B點(diǎn)坐標(biāo).
(2)點(diǎn)A在第四象限,當(dāng)m為何值時(shí),點(diǎn)A(m+2,3m5)到x軸的距離是它到y軸距離的一半.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com