【題目】一直角三角板的直角頂點(diǎn)在直線上,作射線三角板的各邊和射線都處于直線的上方.
(1)將三角板繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),當(dāng)平分時(shí),如圖1,如果,求的度數(shù);
(2)如圖2,將三角板繞點(diǎn)在平面內(nèi)任意轉(zhuǎn)動(dòng),如果始終在內(nèi),且,請(qǐng)問(wèn): 和有怎樣的數(shù)量關(guān)系?
(3)如圖2,如果平分,是否也平分?請(qǐng)說(shuō)明理由.
【答案】(1);(2)∠BOC-∠AOM=;(3)OB平分∠CON.理由見(jiàn)解析
【解析】
(1)根據(jù)角平分線的意義可得∠COM=∠BOC=65°,再根據(jù)互余可求出∠AOC的度數(shù);
(2)當(dāng)OA始終在∠COM的內(nèi)部時(shí),有∠AOM+∠AOC=65°,∠AOC+∠BOC=90°,進(jìn)而得出∠AOM與∠BOC的等量關(guān)系;
(3)根據(jù)余角的性質(zhì)得出∠AOM+∠BOC=90°,再證明∠AOM+∠BON=90°,即可得出結(jié)論.
解:(1)∵平分,
∴∠COM=∠BOC=65°,
又∵∠AOC+∠BOC=90°,
∴∠AOC=90°-65°=25°;
(2)∵OA始終在∠COM的內(nèi)部,
∠COM=∠AOM+∠AOC=65°,
∴∠AOC=65°-∠AOM,
又∵∠AOC+∠BOC=90°,
∴65°-∠AOM+∠BOC=90°,
∴∠BOC-∠AOM=;
(3)∵平分,
∴∠AOM=∠AOC,
又∵∠AOC+∠BOC=90°,
∴∠AOM+∠BOC=90°,
∵∠AOB=90°,
∴∠AOM+∠BON=90°,
∴∠BOC=∠BON,
∴平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上,點(diǎn)分別表示數(shù),且,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),點(diǎn)始終為線段的中點(diǎn),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒.則:
在點(diǎn)運(yùn)動(dòng)過(guò)程中,用含的式子表示點(diǎn)在數(shù)軸上所表示的數(shù).
當(dāng)時(shí),點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)是什么?
設(shè)點(diǎn)始終為線段的中點(diǎn),某同學(xué)發(fā)現(xiàn),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)右側(cè)時(shí),線段長(zhǎng)度始終不變.請(qǐng)你判斷該同學(xué)的說(shuō)法是否正確,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形紙片.把紙片ABCD折疊,使點(diǎn)B恰好落在CD邊的中點(diǎn)E處,折痕為AF.若CD=6,則AF的長(zhǎng)是( )
A. 7.5 B. 8 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過(guò)點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以OA為對(duì)角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”期間,小明到小陳家所在的美麗鄉(xiāng)村游玩,在村頭A處小明接到小陳發(fā)來(lái)的定位,發(fā)現(xiàn)小陳家C在自己的北偏東45°方向,于是沿河邊筆直的綠道l步行200米到達(dá)B處,這時(shí)定位顯示小陳家C在自己的北偏東30°方向,如圖所示,根據(jù)以上信息和下面的對(duì)話,請(qǐng)你幫小明算一算他還需沿綠道繼續(xù)直走多少米才能到達(dá)橋頭D處(精確到1米)(備用數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O直徑,AC是⊙O的切線,連接BC交⊙O于點(diǎn)F,取的中點(diǎn)D,連接AD交BC于點(diǎn)E,過(guò)點(diǎn)E作EH⊥AB于H.
(1)求證:△HBE∽△ABC;
(2)若CF=4,BF=5,求AC和EH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則A2017的坐標(biāo)為( )
A.(505,504)B.(505,-504)C.(-504,504)D.(-504,-504)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,,于點(diǎn)D,BE平分,且于點(diǎn)E與CD相交于點(diǎn)F,于點(diǎn)H,交BE于點(diǎn)G,下列結(jié)論:①;②;③④;其中正確的是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個(gè)問(wèn)題:“今有邑方二百步,各中開(kāi)門,出東門十五步有木,問(wèn):出南門幾步而見(jiàn)木?”
用今天的話說(shuō),大意是:如圖,是一座邊長(zhǎng)為200步(“步”是古代的長(zhǎng)度單位)的正方形小城,東門位于的中點(diǎn),南門位于的中點(diǎn),出東門15步的處有一樹(shù)木,求出南門多少步恰好看到位于處的樹(shù)木(即點(diǎn)在直線上)?請(qǐng)你計(jì)算的長(zhǎng)為__________步.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com