【題目】如圖,已知AB為⊙O直徑,AC是⊙O的切線,連接BC交⊙O于點(diǎn)F,取的中點(diǎn)D,連接ADBC于點(diǎn)E,過點(diǎn)EEHABH.

(1)求證:HBE∽△ABC;

(2)若CF=4,BF=5,求ACEH的長(zhǎng).

【答案】(1)證明見解析;(2)CA=6,EH=2.

【解析】(1)根據(jù)切線的性質(zhì)即可證明:∠CAB=EHB,由此即可解決問題;

(2)連接AF.由CAF∽△CBA,推出CA2=CFCB=36,推出CA=6,AB=,AF=,由RtAEFRtAEH,推出AF=AH=2,設(shè)EF=EH=x.在RtEHB中,可得(5﹣x)2=x2+(2,解方程即可解決問題;

1)AC是⊙O的切線,

CAAB.

EHAB,

∴∠EHB=CAB.

∵∠EBH=CBA,

∴△HBE∽△ABC.

(2)連接AF.

AB是直徑,

∴∠AFB=90°.

∵∠C=C,CAB=AFC,

∴△CAF∽△CBA,

CA2=CFCB=36,

CA=6,AB=,AF=

,

∴∠EAF=EAH.

EFAF,EHAB,

EF=EH.

AE=AE,

RtAEFRtAEH,

AF=AH=2.

設(shè)EF=EH=x.在RtEHB中,(5﹣x)2=x2+(2

x=2,

EH=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.

中線AD的取值范圍是 ;

(2)問題解決:

如圖②,在ABC中,D是BC邊上的中點(diǎn),DEDF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】灌云教育局為了解今年九年級(jí)學(xué)生體育測(cè)試情況,隨機(jī)抽查了部分學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖荆碅、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:

(說明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下)

(1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)樣本中D級(jí)的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是_____________;

(3)扇形統(tǒng)計(jì)圖中A級(jí)所在的扇形的圓心角度數(shù)是_____________;

(4)若該縣九年級(jí)有8000名學(xué)生,請(qǐng)你用此樣本估計(jì)體育測(cè)試中A級(jí)和B級(jí)的學(xué)生人數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是直角三角形斜邊上一動(dòng)點(diǎn)(不與點(diǎn),重合),作直線,分別過點(diǎn)向直線作垂線,垂足分別為,,為斜邊的中點(diǎn).

1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),的位置關(guān)系是______的數(shù)量關(guān)系是______;

2)如圖2,當(dāng)點(diǎn)在線段上(不與點(diǎn)重合)時(shí),試猜想的數(shù)量關(guān)系,并說明理由;

3)如圖3,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),此時(shí)(2)中的結(jié)論是否仍成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一直角三角板的直角頂點(diǎn)在直線上,作射線三角板的各邊和射線都處于直線的上方.

1)將三角板繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),當(dāng)平分時(shí),如圖1,如果,求的度數(shù);

2)如圖2,將三角板點(diǎn)在平面內(nèi)任意轉(zhuǎn)動(dòng),如果始終在內(nèi),且,請(qǐng)問: 有怎樣的數(shù)量關(guān)系?

3)如圖2,如果平分是否也平分?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列四項(xiàng)調(diào)查中,方式正確的是  

A. 了解本市中學(xué)生每天學(xué)習(xí)所用的時(shí)間,采用全面調(diào)查的方式

B. 為保證運(yùn)載火箭的成功發(fā)射,對(duì)其所有的零部件采用抽樣調(diào)查的方式

C. 了解某市每天的流動(dòng)人口數(shù),采用全面調(diào)查的方式

D. 了解全市中學(xué)生的視力情況,采用抽樣調(diào)查的方式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著社會(huì)的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時(shí)尚.健身達(dá)人小陳為了了解他的好友的運(yùn)動(dòng)情況.隨機(jī)抽取了部分好友進(jìn)行調(diào)查,把他們61日那天行走的情況分為四個(gè)類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計(jì)結(jié)果如圖所示:

請(qǐng)依據(jù)統(tǒng)計(jì)結(jié)果回答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   位好友.

(2)已知A類好友人數(shù)是D類好友人數(shù)的5倍.

①請(qǐng)補(bǔ)全條形圖;

②扇形圖中,“A”對(duì)應(yīng)扇形的圓心角為   度.

③若小陳微信朋友圈共有好友150人,請(qǐng)根據(jù)調(diào)查數(shù)據(jù)估計(jì)大約有多少位好友61日這天行走的步數(shù)超過10000步?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,將兩個(gè)完全相同的三角形紙片 ABC DEC重合放置,其中∠C=90°,∠B=∠E=30°.

1)如圖2,固定△ABC,使△DEC 繞點(diǎn) C 旋轉(zhuǎn),當(dāng)點(diǎn) D 恰好落 AB 邊上時(shí),

①填空:線段 DE AC 的位置關(guān)系是 ;

②設(shè)△BDC 的面積為 S1,△AEC 的面積為 S2,求證:S1=S2

2)當(dāng)△DEC 繞點(diǎn) C 旋轉(zhuǎn)到如圖 3 所示的位置時(shí),小明猜想(1 S1 S2 的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AECBC、CE 邊上的高,請(qǐng)你證明小明的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)D、E分別在邊BC、AC上,且DEAB,過點(diǎn)EEFDE,交BC的延長(zhǎng)線于點(diǎn)F

1)求∠F的度數(shù);

2)若CD=4,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案