【題目】某公司以每噸元的價格收購了噸某種藥材,若直接在市場上銷售,每噸的售價是元.該公司決定加工后再出售,相關(guān)信息如下表所示:

工藝

每天可加工藥材的噸數(shù)

成品率

成品售價

(元/

粗加工

14

80%

6000

精加工

6

60%

11000

(:①成品率80%指加工100噸原料能得到80噸可銷售藥材;②加工后的廢品不產(chǎn)生效益.)

受市場影響,該公司必須在天內(nèi)將這批藥材加工完畢.

(1)若全部粗加工,可獲利_______________________

(2)若盡可能多的精加工,剩余的直接在市場上銷售,可獲利_____________;

(3)若部分粗加工,部分精加工,恰好天完成,求可獲利多少元?

【答案】 420000 376000

【解析】(1)根據(jù)全部粗加工可獲利=全部粗加工共可售額-成本;(2) 天共可精加工 (噸),可售得 (元),再減去成本可得利潤;(3)設(shè)精加工天,粗加工天,則 ,求出x,y,再計算可售額和利潤.

解:(1)全部粗加工共可售得 (元),

成本為 (元),

獲利為 (元).

全部粗加工可獲利 元.

2 天共可精加工 (噸),

可售得 (元),

獲利為 (元).

可獲利 元.

3)設(shè)精加工 天,粗加工 天,

解得

銷售可得 (元),

獲利為 (元).

答:可獲利 元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=30°,OC為∠AOB內(nèi)部一條射線,點P為射線OC上一點,OP=4,點M、N分別為OA、OB邊上動點,則△MNP周長的最小值為( )

A. 2 B. 4 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,AD,BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā)沿圖中某一個扇形順時針勻速運動,設(shè)∠APB=y(單位:度),如果y與點P運動的時間x(單位:秒)的函數(shù)關(guān)系的圖象大致如圖2所示,那么點P的運動路線可能為( )

A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E為CD上一點,連結(jié)AE,BD,且AE,BD交于點F,S△DEF∶S△ABF=4∶25,求DE∶EC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:a+,其中a=1007.如圖是小亮和小芳的解答過程.

(1)_________的解法是錯誤的;

(2)錯誤的原因在于未能正確地運用二次根式的性質(zhì):_________;

(3)先化簡,再求值:a+2,其中a=-2007.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王華在學習相似三角形時,在北京市義務(wù)教育課程改革實驗教材第17冊書,第31頁遇到這樣一道題:
如圖1,在△ABC中,P是邊AB上的一點,聯(lián)結(jié)CP.

要使△ACP∽△ABC,還需要補充的一個條件是__,或__.
(1)王華補充的條件是 , 或
(2)請你參考上面的圖形和結(jié)論,探究、解答下面的問題:
如圖2,在△ABC中,∠A=30°,AC2= AB2+AB.BC.
求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點DAB邊上,點D到點A的距離與點D到點C的距離相等.

(1)利用尺規(guī)作圖作出點D,不寫作法但保留作圖痕跡.

(2)若ABC的底邊長5,周長為21,求BCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,對角線ACBD交于點O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。

A. OAOC,OBODB. OAOCABCD

C. ABCD,OAOCD. ADB=∠CBD,∠BAD=∠BCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對稱軸為直線x=﹣1,與x軸的一個交點為(1,0),與y軸的交點為(0,3),則方程ax2+bx+c=0(a≠0)的解為( )

A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4

查看答案和解析>>

同步練習冊答案