【題目】如圖1,AD,BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā)沿圖中某一個(gè)扇形順時(shí)針勻速運(yùn)動(dòng),設(shè)∠APB=y(單位:度),如果y與點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的函數(shù)關(guān)系的圖象大致如圖2所示,那么點(diǎn)P的運(yùn)動(dòng)路線可能為( )

A.O→B→A→O
B.O→A→C→O
C.O→C→D→O
D.O→B→D→O

【答案】C
【解析】當(dāng)點(diǎn)P沿O→C運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)P在點(diǎn)O的位置時(shí),y=90°,當(dāng)點(diǎn)P在點(diǎn)C的位置時(shí),

∵OA=OC,∴y=45°,∴y由90°逐漸減小到45°;

當(dāng)點(diǎn)P沿C→D運(yùn)動(dòng)時(shí),根據(jù)圓周角定理,可得y≡90°÷2=45°;

當(dāng)點(diǎn)P沿D→O運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)P在點(diǎn)D的位置時(shí),y=45°,

當(dāng)點(diǎn)P在點(diǎn)0的位置時(shí),y=90°,y由45°逐漸增加到90°.

故點(diǎn)P的運(yùn)動(dòng)路線可能為O→C→D→O.

所以答案是:C.


【考點(diǎn)精析】本題主要考查了一次函數(shù)的圖象和性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時(shí)擲兩枚標(biāo)有數(shù)字1~6的正方形骰子,數(shù)字和為1的概率是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲組的名工人12月份完成的總工作量比此月人均定額的倍多件,乙組的名工人12月份完成的總工作量比此月人均定額的倍少件.

1)如果兩組工人實(shí)際完成的此月人均工作量相等,那么此月的人均定額是多少件?

2)如果甲組工人實(shí)際完成的此月人均工作量比乙組工人實(shí)際完成的此月人均工作量少3件,那么此月人均定額是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),∠COE=90°,OF平分∠AOE.

(1)若∠COF=40°,求∠BOE的度數(shù).

(2)若∠COF=α(0°<α<90°),則∠BOE=______(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,把△ABC沿DE折疊,使點(diǎn)A落在點(diǎn)A’處,試探索∠1+∠2與∠A的關(guān)系.(證明).

(2)如圖2,BI平分∠ABC,CI平分∠ACB,把△ABC折疊,使點(diǎn)A與點(diǎn)I重合,若∠1+∠2=130°,求∠BIC的度數(shù);

(3)如圖3,在銳角△ABC中,BF⊥AC于點(diǎn)F,CG⊥AB于點(diǎn)G,BF、CG交于點(diǎn)H,把△ABC折疊使點(diǎn)A和點(diǎn)H重合,試探索∠BHC與∠1+∠2的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)一點(diǎn)P,若點(diǎn)P到兩條相交直線l1和l2的距離都相等,且距離均為h(h>0),則稱點(diǎn)P叫做直線l1和l2的“h距離點(diǎn)”. 例如圖1所示,直線l1和l2互相垂直,交于O點(diǎn),平面內(nèi)一點(diǎn)P到兩直線的距離都是2,則稱點(diǎn)P叫做直線l1和l2的“2距離點(diǎn)”.

(1)若直線l1和l2互相垂直,且交于O點(diǎn),平面內(nèi)一點(diǎn)P是直線l1和l2的“7距離點(diǎn)”,直接寫出OP的長(zhǎng)度為

(2)如圖2所示,直線l1和l2相交于點(diǎn)O,夾角為60°,已知平面內(nèi)一點(diǎn)P是直線l1和l2的“3距離點(diǎn)”,求出OP的長(zhǎng)度;

(3)已知三條直線兩兩相交后形成一個(gè)等邊三角形,如圖3所示,在等邊△ABC中,點(diǎn)P是三角形內(nèi)部一點(diǎn),且點(diǎn)P分別是等邊△ABC三邊所在直線的“距離點(diǎn)”,請(qǐng)你直接寫出△ABC的面積是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以平行四邊形ABCD的頂點(diǎn)A為圓心,AB為半徑作圓,分別交BC,AD于E,F(xiàn)兩點(diǎn),交BA的延長(zhǎng)于G,判斷弧EF和弧FG是否相等,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司以每噸元的價(jià)格收購(gòu)了噸某種藥材,若直接在市場(chǎng)上銷售,每噸的售價(jià)是元.該公司決定加工后再出售,相關(guān)信息如下表所示:

工藝

每天可加工藥材的噸數(shù)

成品率

成品售價(jià)

(元/

粗加工

14

80%

6000

精加工

6

60%

11000

(:①成品率80%指加工100噸原料能得到80噸可銷售藥材;②加工后的廢品不產(chǎn)生效益.)

受市場(chǎng)影響,該公司必須在天內(nèi)將這批藥材加工完畢.

(1)若全部粗加工,可獲利_______________________;

(2)若盡可能多的精加工,剩余的直接在市場(chǎng)上銷售,可獲利_____________;

(3)若部分粗加工,部分精加工,恰好天完成,求可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=6cm,AC=12cm,動(dòng)點(diǎn)D以1cm/s 的速度從點(diǎn)A出發(fā)到點(diǎn)B止,動(dòng)點(diǎn)E以2cm/s 的速度從點(diǎn)C出發(fā)到點(diǎn)A止,且兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),求運(yùn)動(dòng)的時(shí)間t.

查看答案和解析>>

同步練習(xí)冊(cè)答案