【題目】已知拋物線的對稱軸為,與軸的一個交點在和之間,其部分圖像如圖所示,則下列結(jié)論:①點,,是該拋物線上的點,則;②;③(為任意實數(shù)).其中正確結(jié)論的個數(shù)是( )
A. 0B. 1C. 2D. 3
【答案】C
【解析】
逐一分析3條結(jié)論是否正確:①根據(jù)拋物線的對稱性找出點(-,y3)在拋物線上,再結(jié)合拋物線對稱軸左邊的單調(diào)性即可得出①錯誤;②由x=-3時,y<0,即可得出9a-3b+c<0,根據(jù)拋物線的對稱軸為x=-1,即可得出b=2a,即可得出②正確;③∵拋物線開口向下,對稱軸為x=-1,有最大值,再根據(jù)x=t時的函數(shù)值為at2+bt+c,由此即可得出③正確.綜上即可得出結(jié)論.
解:①∵拋物線的對稱軸為x=-1,點(,y3)在拋物線上,
∴(-,y3)在拋物線上.
∵-<-<-,且拋物線對稱軸左邊圖象y值隨x的增大而增大,
∴y1<y3<y2.∴①錯誤;
②∵拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,
∴-=-1,∴2a=b,∴a=
∵當(dāng)x=-3時,y=9a-3b+c<0,
∴9-3b+c=<0,
∴3b+2c<0,∴②正確;
③∵拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,開口向下
∴當(dāng)x=-1,
∵當(dāng)x=t時,y= at2+bt+c
∵為任意實數(shù)
∴at2+bt+c≤
∴at2+bt≤a-b.
∴③正確.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點P是線段AC上一動點(點P不與A,C重合),連接BP,過點A作直線BP的垂線段,垂足為點D,將線段AD繞點A逆時針旋轉(zhuǎn)60°得到線段AE,連接DE,CE.
(1)求證:BD=CE;
(2)延長ED交BC于點F,求證:F為BC的中點;
(3)在(2)的條件下,若△ABC的邊長為1,直接寫出EF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3分別交 x軸、y軸于點A、C.點P是該直線與雙曲線在第一象限內(nèi)的一個交點,PB⊥x軸于B,且S△ABP=16.
(1)求證:△AOC∽△ABP;
(2)求點P的坐標(biāo);
(3)設(shè)點Q與點P在同一個反比例函數(shù)的圖象上,且點Q在直線PB的右側(cè),作QD⊥x軸于D,當(dāng)△BQD與△AOC相似時,求點Q的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當(dāng)?shù)刈廛嚬疽还?/span>62輛兩種型號客車作為交通工具.
下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:
型號 | 載客量 | 租金單價 |
30人/輛 | 380元/輛 | |
20人/輛 | 280元/輛 |
注:載客量指的是每輛客車最多可載該校師生的人數(shù).設(shè)學(xué)校租用型號客車輛,租車總費用為元.
(1)求與的函數(shù)解析式,請直接寫出的取值范圍;
(2)若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最?最省的總費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌
粽子,每盒進價是40元,超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn):當(dāng)售價定為每盒45元時,每天可賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價 (元)之間的函數(shù)關(guān)系式;(4分)
(2)當(dāng)每盒售價定為多少元時,每天銷售的利潤 (元)最大?最大利潤是多少?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b=0;③m為任意實數(shù),則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中正確的有( 。
A.①②③B.②④C.②⑤D.②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,矩形ABCD的對角線AC、BD交于點O,過點C作BD的平行線,過點D作AC的平行線,兩線交于點P,則四邊形CODP的形狀是 ;
(2)如圖2,若題目中的矩形變?yōu)榱庑,則四邊形CODP的形狀是 ;
(3)如圖3,若題目中的矩形變?yōu)檎叫,請判斷四邊?/span>CODP的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com