精英家教網 > 初中數學 > 題目詳情

【題目】按要求解一元二次方程:

12x2﹣3x+1=0(配方法)

2xx﹣2+x﹣2=0(因式分解法)

【答案】1x1=1x2=;(2x1=2x2=﹣1

【解析】

試題(1)首先將常數項移到等號的右側,把二次項系數化為1,再將等號左右兩邊同時加上一次項系數一半的平方,即可將等號左邊的代數式寫成完全平方形式.

2)方程左邊分解因式后,利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.

解:(12x2﹣3x+1=0

x2x=﹣

x2x+=﹣+,

x﹣2=,

x﹣

∴x1=1,x2=

2xx﹣2+x﹣2=0,

分解因式得:(x﹣2)(x+1=0,

可得x﹣2=0x+1=0

解得:x1=2,x2=﹣1

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】P到圖形Ω(可以是線段、三角形、圓或不規(guī)則圖形等)的距離是指:P與圖形Ω中所有點連接的線段中最短線段的長度.如圖①中的兩個虛線段PQ的長度都表示點P到圖形Ω的距離.

如圖②,在平面直角坐標系xOy中,ABC的三個頂點坐標分別為,點P從原點出發(fā),以每秒1個單位長度的速度向x軸的正方向運動了t.

1)當t=0時,求點PABC的距離;

2)當點PABC的距離等于線段AP的長度時,求t的范圍;

3)當點PABC的距離大于時,求t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=(m﹣2)x2+2mx+m+3與x軸有兩個交點.

(1)求m的取值范圍;

(2)當m取滿足條件的最大整數時,求拋物線與x軸有兩個交點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是等邊三角形,被一矩形所截,被截成三等分,EHBC,則四邊形的面積是的面積的:( )

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABO的直徑,弦CDAB,∠CDB30°,CD6,陰影部分圖形的面積為( )

A. 4πB. 3πC. 2πD. π

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線的對稱軸為,與軸的一個交點在之間,其部分圖像如圖所示,則下列結論:①點,,是該拋物線上的點,則;為任意實數).其中正確結論的個數是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的最大值為4,且該拋物線與軸的交點為,頂點為.

1)求該二次函數的解析式及點,的坐標;

2)點軸上的動點,

的最大值及對應的點的坐標;

②設軸上的動點,若線段與函數的圖像只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,已知ABC三個頂點的坐標分別為A(﹣4,0),B(﹣3,﹣3),C(﹣1,﹣3).

1)畫出ABC關于x軸對稱的ADE(其中點B,C的對稱點分別為點DE);

2)畫出ABC關于原點成中心對稱的FGH(其中A、B、C的對稱點分別為點F,G,H).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD交于點O,已知∠AOD=120°,AC=16,則圖中長度為8的線段有( 。

A. 2 B. 4 C. 5 D. 6

查看答案和解析>>

同步練習冊答案