【題目】如圖,在中,點(diǎn)D是線段上的動點(diǎn),將線段繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到線段,連接.若已知,設(shè)B,D兩點(diǎn)間的距離為,AD兩點(diǎn)間的距離為,B,E兩點(diǎn)間的距離為

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù),隨自變量x的變化而變化的規(guī)律進(jìn)行了探究

下面是小明的探究過程,請補(bǔ)全完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了,x的幾組對應(yīng)值,如下表:(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))

0

1

2

3

4

5

6

7

8

7.03

6.20

5.44

4.76

4.21

3.85

3.73

3.87

4.26

a

5.66

4.32

b

1.97

1.59

2.27

3.43

4.73

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對應(yīng)的點(diǎn),,并畫出函數(shù),的圖象;

3)結(jié)合函數(shù)圖象,解決問題:

①當(dāng)E在線段上時(shí),的長度約為___________cm;

②當(dāng)為等腰三角形時(shí),的長度x約為___________cm

【答案】1;(2)圖見解析;(3)①6,②34.17.5.

【解析】

1)當(dāng)時(shí),,即可求解;

2)描點(diǎn)即可;

(3)①當(dāng)E在線段BC上時(shí),即:,則可求出BD長度;②分BE=DE、BE=BD、DE=BE三種情況,分別求解即可.

1)當(dāng)時(shí),點(diǎn)B與點(diǎn)D重合,此時(shí)cm,當(dāng)時(shí),測量出cm

2)描點(diǎn)法得到函數(shù)圖像,如圖所示:

3 ①當(dāng)E在線段BC上時(shí),即,根據(jù)表格中數(shù)據(jù)可知,當(dāng)時(shí),,cm

②當(dāng)BE=DE時(shí),即,此時(shí),時(shí)無法構(gòu)成三角形, (舍去);

當(dāng)BE=BD時(shí),即時(shí),在圖上畫出直線,如圖所示:

觀察圖像可知,此時(shí)cm;

當(dāng)DE=BE時(shí),即時(shí),觀察圖像可知,此時(shí)cm;

故答案為34.17.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,點(diǎn)分別在上,且.設(shè)的邊上的高為,的邊上的高為

1)若、的面積分別為3,1,則 ;

2)設(shè)、四邊形的面積分別為,求證:;

3)如圖②,在中,點(diǎn)分別在上,點(diǎn)上,且, 、、的面積分別為3, 7 5,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90o,BE是它的角平分線,DAB邊上,以DB為直徑的半圓O經(jīng)過點(diǎn)E

1)試說明:AC是圓O的切線;

2)若∠A=30o,圓O的半徑為4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以BC為直徑的⊙OCFB的邊CF于點(diǎn)A,BM平分∠ABCAC于點(diǎn)M,ADBC于點(diǎn)DADBM于點(diǎn)N,MEBC于點(diǎn)EAB2=AF·AC,cosABD=,AD=12

1)求證:ABF∽△ACB;

2)求證:FB是⊙O的切線;

3)證明四邊形AMEN是菱形,并求該菱形的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過點(diǎn)A30),B2,3),C03),其頂點(diǎn)為D

1)求拋物線的解析式;

2)設(shè)點(diǎn)M1,m),當(dāng)MB+MD的值最小時(shí),求m的值;

3)若P是拋物線上位于直線AC上方的一個(gè)動點(diǎn),求APC的面積的最大值;

4)若拋物線的對稱軸與直線AC相交于點(diǎn)NE為直線AC上任意一點(diǎn),過點(diǎn)EEFND交拋物線于點(diǎn)F,以ND,E,F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在單位長度為1米的平面直角坐標(biāo)系中,曲線是由半徑為2米,圓心角為多次復(fù)制并首尾連接而成.現(xiàn)有一點(diǎn)PA(A為坐標(biāo)原點(diǎn))出發(fā),以每秒米的速度沿曲線向右運(yùn)動,則在第2019秒時(shí)點(diǎn)P的縱坐標(biāo)為( )

A. 2B. 1C. 0D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象分別交x軸、y軸于C,D兩點(diǎn),交反比例函數(shù)圖象于A,4),B3,m)兩點(diǎn).

(1)求直線CD的表達(dá)式;

(2)點(diǎn)E是線段OD上一點(diǎn),若,求E點(diǎn)的坐標(biāo);

(3)請你根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①已知拋物線y=ax2﹣3ax﹣4a(a<0)的圖象與x軸交于A、B兩點(diǎn)(AB的左側(cè)),與y的正半軸交于點(diǎn)C,連結(jié)BC,二次函數(shù)的對稱軸與x軸的交點(diǎn)為E.

(1)拋物線的對稱軸與x軸的交點(diǎn)E坐標(biāo)為_____,點(diǎn)A的坐標(biāo)為_____;

(2)若以E為圓心的圓與y軸和直線BC都相切,試求出拋物線的解析式;

(3)在(2)的條件下,如圖②Q(m,0)是x的正半軸上一點(diǎn),過點(diǎn)Qy軸的平行線,與直線BC交于點(diǎn)M,與拋物線交于點(diǎn)N,連結(jié)CN,將CMN沿CN翻折,M的對應(yīng)點(diǎn)為M′.在圖②中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)小組到人民英雄紀(jì)念碑站崗執(zhí)勤,并在活動后實(shí)地測量了紀(jì)念碑的高度,方法如下:如圖,首先在測量點(diǎn)A處用高為1.5m的測角儀AC測得人民英雄紀(jì)念碑MN項(xiàng)部M的仰角為37°,然后在測量點(diǎn)B處用同樣的測角儀BD測得人民英雄紀(jì)念碑MN頂部M的仰角為45°,最后測量出AB兩點(diǎn)間的距離為15m,并且N,B,A三點(diǎn)在一條直線上,連接CD并延長交MN于點(diǎn)E.請你利用他們的測量結(jié)果,計(jì)算人民英雄紀(jì)念碑MN的高度.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan35°≈0.75

查看答案和解析>>

同步練習(xí)冊答案