【題目】如圖,ABO的直徑,直線BMAB于點B,點CO上,分別連接BC,AC,且AC的延長線交BM于點DCFO的切線交BM于點F

(1)求證:CFDF;

(2)連接OF,若AB=10,BC=6,求線段OF的長.

【答案】(1)詳見解析;(2)OF

【解析】

(1)連接OC,如圖,根據(jù)切線的性質(zhì)得∠1+3=90°,則可證明∠3=4,再根據(jù)圓周角定理得到∠ACB=90°,然后根據(jù)等角的余角相等得到∠BDC=5,從而根據(jù)等腰三角形的判定定理得到結(jié)論;

(2)根據(jù)勾股定理計算出AC=8,再證明ABC∽△ABD,利用相似比得到AD=,然后證明OFABD的中位線,從而根據(jù)三角形中位線性質(zhì)求出OF的長.

(1)證明:連接OC,如圖,

CF為切線,

OCCF,

∴∠1+3=90°,

BMAB,

∴∠2+4=90°,

OCOB

∴∠1=2,

∴∠3=4,

AB為直徑,

∴∠ACB=90°,

∴∠3+5=90°,4+BDC=90°,

∴∠BDC5,

CFDF;

(2)在RtABC中,AC=8,

∵∠BACDAB,

∴△ABC∽△ABD,

,即,

AD,

∵∠3=4,

FCFB,

FCFD,

FDFB,

BOAO

OFABD的中位線,

OFAD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某演唱會購買門票的方式有兩種

方式一:若單位贊助廣告費10萬元,則該單位所購門票的價格為每張0.02萬元;(注方式一中總費用=廣告費用+門票費用)

方式二:按如圖所示的購買門票方式.

設(shè)購買門票x,總費用為y萬元.

(1)求按方式一購買時yx的函數(shù)關(guān)系式

(2)若甲、乙兩個單位分采用方式一,方式二購買本場演唱會門共400,且乙單位購買超過100張,兩單位共花費27.2萬元,求甲、乙兩單位各購買門票多少張?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線 y=ax2 -2ax+4(a<0) x 軸于點 AB,與 y 軸交于點 C,AB=6

1)如圖 1,求拋物線的解析式;

2 如圖 2,點 R 為第一象限的拋物線上一點,分別連接 RB、RC,設(shè)RBC 的面積為 s,點 R 的橫坐標(biāo)為 t,求 s t 的函數(shù)關(guān)系式;

3)在(2)的條件下,如圖 3,點 D x 軸的負(fù)半軸上,點 F y 軸的正半軸上,點 E OB 上一點,點 P 為第一象限內(nèi)一點,連接 PD、EFPD OC 于點 G,DG=EFPDEF,連接 PE,∠PEF=2PDE,連接 PB、PC,過點R RTOB 于點 T,交 PC 于點 S,若點 P BT 的垂直平分線上,OB-TS=,求點 R 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A0,4)、B2,0),點C、D分別是OA、AB的中點,在射線CD上有一動點P,若△ABP是直角三角形,則點P的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bxcx軸交于點A(-1O)、C3,0),點B為拋物線頂點,直線BD為拋物線的對稱軸,點Dx軸上,連接AB、BC.

⑴如圖1,若∠ABC60°,則點B的坐標(biāo)為______________;

⑵如圖2,若∠ABC90°,ABy軸交于點E,連接CE.

①求這條拋物線的解析式;

②點P為第一象限拋物線上一個動點,設(shè)△PEC的面積為S,點P的橫坐標(biāo)為m,求S關(guān)于m的函數(shù)關(guān)系武,并求出S的最大值;

③如圖3,連接OB,拋物線上是否存在點Q,使直線QC與直線BC所夾銳角等于∠OBD,若存在請直接寫出點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程,為實數(shù),且,證明:

1)這個方程有兩個不相等的實數(shù)根;

2)一個根大于1,另一個根小于1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON90°,已知△ABC中,ACBCAB6,△ABC的頂點A、B分別在邊OM、ON上,當(dāng)點B在邊ON上運動時,A隨之在OM上運動,△ABC的形狀始終保持不變,在運動的過程中,點C到點O的距離為整數(shù)的點有( 。﹤.

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且EDF=45°.將DAE繞點D逆時針旋轉(zhuǎn)90°,得到DCM.

1)求證:EF=FM

2)當(dāng)AE=1時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C90°

1)如圖①,點O在斜邊AB上,以點O為圓心,OB長為半徑的圓交AB于點D,交BC于點E,與邊AC相切于點F.求證:∠1=∠2

2)在圖②中作⊙M,使它滿足以下條件:①圓心在邊AB上;②經(jīng)過點B;③與邊AC相切.(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)

查看答案和解析>>

同步練習(xí)冊答案