【題目】為積極響應(yīng)“弘揚(yáng)傳統(tǒng)文化”的號(hào)召,某學(xué)校倡導(dǎo)全校學(xué)生進(jìn)行經(jīng)典詩詞誦背活動(dòng),并在活動(dòng)之后舉辦經(jīng)典詩詞大賽.為了解本次系列活動(dòng)的持續(xù)效果,學(xué)校團(tuán)委在活動(dòng)啟動(dòng)之初,隨機(jī)抽取部分學(xué)生調(diào)查“一周詩詞誦背數(shù)量”.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(部分)如圖所示:大賽結(jié)束后一個(gè)月,再次抽查這部分學(xué)生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計(jì)表:
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 10 | 10 | 15 | 40 | 25 | 20 |
請(qǐng)根據(jù)調(diào)查的信息
(1)以抽查的這部分學(xué)生為樣本,求“在大賽啟動(dòng)之初,一周詩詞誦背數(shù)量不超過5首”的概率;
(2)以這部分學(xué)生經(jīng)典詩詞大賽啟動(dòng)之初和結(jié)束一個(gè)月后,一周詩詞誦背數(shù)量的平均數(shù)作為決策依據(jù),說明平均每名學(xué)生一周詩詞誦背數(shù)量的增長率接近16%還是22%?
【答案】(1);(2)平均每名學(xué)生一周詩詞誦背數(shù)量的增長率更接近22%.
【解析】
(1)根據(jù)5首的人數(shù)和圓心角的度數(shù)求出抽取的學(xué)生數(shù)量,再求出大賽啟動(dòng)之初,一周詩詞誦背數(shù)量為4首的人數(shù),然后根據(jù)概率公式即可得出答案;
(2)分別求出賽啟動(dòng)之初和結(jié)束一個(gè)月后詩詞誦背數(shù)量的平均數(shù),然后求出平均每名學(xué)生一周詩詞誦背數(shù)量的增長率即可得出答案.
解:(1)由題意得抽查的這部分學(xué)生的數(shù)量為:20÷=120(名),
大賽啟動(dòng)之初,一周詩詞誦背數(shù)量為4首的人數(shù)為120×=45(名),
則P(大賽啟動(dòng)之初,一周詩詞誦背數(shù)量不超過5首)═=;
(2)大賽啟動(dòng)之初,一周詩詞誦背數(shù)量的平均數(shù)為:
(15×3+45×4+20×5+16×6+13×7+11×8)=5(首),
大賽啟結(jié)束一個(gè)月后,一周詩詞誦背數(shù)量的平均數(shù)為:
(10×3+10×4+15×5+40×6+25×7+20×8)=6(首),
平均每名學(xué)生一周詩詞誦背數(shù)量的增長率是×100%=20%,
所以平均每名學(xué)生一周詩詞誦背數(shù)量的增長率更接近22%.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長”的活動(dòng),并計(jì)劃購置一批圖書,購書前,對(duì)學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計(jì)圖中的m= ,n= .
(2)已知該校共有3600名學(xué)生,請(qǐng)你估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校將舉辦讀書知識(shí)競賽,九年級(jí)1班要在本班3名優(yōu)勝者(2男1女)中隨機(jī)選送2人參賽,請(qǐng)用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,中,是邊上一點(diǎn),是的中點(diǎn),過點(diǎn)作的平行線交的延長線于,且,連接.
(1)求證:是的中點(diǎn);
(2)若,試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以OA的長為半徑的圓O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB=,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,內(nèi)接于,平分交于,過點(diǎn)作的切線分別交、的延長線于、,連接.
(1)求證:;
(2)連,若,求的值;
(3)若,且,求弦的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,A、C兩點(diǎn)在⊙O上,點(diǎn)B在⊙O內(nèi),,AB⊥AC,若OB⊥OC,那么OB的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D是直徑為AB的⊙O上四個(gè)點(diǎn),C是劣弧的中點(diǎn),AC交BD于點(diǎn)E,AE=2,EC=1.
(1)求證:△DEC∽△ADC;
(2)連結(jié)DO,探究四邊形OBCD是否是菱形?若是,請(qǐng)你給予證明;若不是,請(qǐng)說明理由;
(3)延長AB到H,使BH=OB,求證:CH是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=5,AB=8,點(diǎn)E為射線DC上一個(gè)動(dòng)點(diǎn),把△ADE沿直線AE折疊,當(dāng)點(diǎn)D的對(duì)應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線上時(shí),則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】連接正方形四邊的中點(diǎn)所構(gòu)成的正方形,我們稱其原正方形的中點(diǎn)正方形,如圖,已知正方形的中點(diǎn)正方形,再作正方形的中點(diǎn)正方形,這樣不斷下去,第n次所做的中點(diǎn)正方形,若正方形的邊長為1,若設(shè)中點(diǎn)正方形的面積為,則___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com