【題目】如圖,圖1中ΔABC是等邊三角形,DE是中位線,F是線段BC延長線上一點,且CF=AE,連接BE,EF.
圖1 圖2
(1)求證:BE=EF;
(2)若將DE從中位線的位置向上平移,使點D、E分別在線段AB、AC上(點E與點A不重合),其他條件不變,如圖2,則(1)題中的結(jié)論是否成立?若成立,請證明;若不成立.請說明理由.
【答案】(1)證明見解析;(2)結(jié)論仍然成立;(3)
【解析】
(1)利用等邊三角形的性質(zhì)以及三線合一證明得出結(jié)論;
(2)由中位線的性質(zhì)、平行線的性質(zhì),等邊三角形的性質(zhì)以及三角形全等的判定與性質(zhì)證明
(1)證明:∵ΔABC是等邊三角形,
∴∠ABC=∠ACB=,AB=BC=AC
∵DE是中位線,
∴E是AC的中點,
∴BE平分∠ABC,AE=EC
∴∠EBC=∠ABC=
∵AE=CF,
∴CE=CF,
∴∠CEF=∠F
∵∠CEF+∠F=∠ACB=,
∴∠F=,
∴∠EBC=∠F,
∴BE=EF
(2)結(jié)論仍然成立.
∵DE是由中位線平移所得;
∴DE//BC,
∴∠ADE=∠ABC=,∠AED=∠ACB=,
∴ΔADE是等邊三角形,
∴DE=AD=AE,
∵AB=AC,
∴BD=CE,
∵AE=CF,
∴DE=CF
∵∠BDE=-∠ADE=,∠FCE=-∠ACB=,
∴∠FCE=∠EDB,
∴ΔBDE≌ΔECF,
∴BE=EF
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,、、均為格點(格點是指每個小正方形的頂點),將向下平移6個單位得到.利用網(wǎng)格點和直尺畫圖:
(1)在網(wǎng)格中畫出;
(2)畫出邊上的中線,邊上的高線;
(3)若的邊、分別與的邊、垂直,則的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知A(a,0),B(b,3),C(4,0),且滿足(a+b)2+|a﹣b+6|=0,線段AB交y軸于F點.
(1)求點A、B的坐標(biāo);
(2)點D為y軸正半軸上一點,若ED∥AB,且AM,DM分別平分∠CAB,∠ODE,如圖 2,求∠AMD的度數(shù);
(3)如圖 3,(也可以利用圖 1)①求點F的坐標(biāo);②坐標(biāo)軸上是否存在點P,使得△ABP和△ABC的面積相等?若存在,求出P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動:凡購買原價超過200元的商品,超過200元的部分可以享受打折優(yōu)惠若購買商品的實際付款金額y(單位:元)與商品原價x(單位:元)之間的函數(shù)關(guān)系的a圖象如圖所示,則圖中a的值是( 。
A.300B.320C.340D.360
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校隨機(jī)抽取部分學(xué)生,調(diào)查每個月的零花錢消費(fèi)額,數(shù)據(jù)整理成如下的統(tǒng)計表和如圖①②所示的兩幅不完整的統(tǒng)計圖,已知圖①中A,E兩組對應(yīng)的小長方形的高度之比為2:1請結(jié)合相關(guān)數(shù)據(jù)解答以下問題:
(1)本次調(diào)查樣本的容量是______;
(2)補(bǔ)全頻數(shù)分布直方圖,并標(biāo)明各組的頻數(shù);
(3)若該學(xué)校有2500名學(xué)生,請估計月消費(fèi)零花錢不少于300元的學(xué)生的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正確結(jié)論有( 。
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=x-3與x軸,y軸分別交于點A和點B.
(1)求點A和點B的坐標(biāo);
(2)將直線l1向上平移6個單位后得到直線l2,求直線l2的函數(shù)解析式;
(3)設(shè)直線l2與x軸的交點為M,則△MAB的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別是可活動的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長相等.
(1)在一次數(shù)學(xué)活動中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點C,連接DE交AF于點M,觀察發(fā)現(xiàn):點M是DE的中點.
下面是兩位學(xué)生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當(dāng)∠ABE=135°時,延長AD、EF交于點N,求的值;
(3)在(2)的條件下,若=k(k為大于的常數(shù)),直接用含k的代數(shù)式表示的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將長為20cm,寬為8cm的長方形白紙,按如圖所示的方式粘合起來,粘合部分的寬為3cm.
(1)根據(jù)題意,將下面的表格補(bǔ)充完整.
白紙張數(shù)x(張) | 1 | 2 | 3 | 4 | 5 | … |
紙條總長度y(cm) | 20 | 54 | 71 | … |
(2)直接寫出y與x的關(guān)系式.
(3)要使粘合后的長方形總面積為1656cm2,則需用多少張這樣的白紙?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com