【題目】當(dāng)x3時,函數(shù)yx22x3的圖象記為G,將圖象Gx軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個新圖象M,若直線yx+b與圖象M有且只有兩個公共點,則b的取值范圍是_____

【答案】3b1b=﹣

【解析】

根據(jù)題意畫出圖形,進(jìn)而利用直線yx+b過(﹣1,0)以及(30)得出b的值,再利用直線yx+b與拋物線yx22x3有一個交點,求出答案.

如圖所示:∵yx22x3,當(dāng)y0,則0x22x3

解得:x1=﹣1x23,

當(dāng)直線yx+b過(﹣1,0)時,b1,

當(dāng)直線yx+b過(3,0)時,b=﹣3,

故當(dāng)﹣3b1時,直線yx+b與圖象M有且只有兩個公共點,

當(dāng)直線yx+b與拋物線yx22x3有一個交點,

x23x3b0有兩個相等的實數(shù)根,

故△=b24ac9+43+b)=0,

解得:b=﹣,

綜上所述:直線yx+b與圖象M有且只有兩個公共點,則b的取值范是:﹣3b1b=﹣

故答案為:﹣3b1b=﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一批單價為16元的日用品.若按每件23元的價格銷售,每月能賣出270件;若按每件28元的價格銷售,每月能賣出120件;若規(guī)定售價不得低于23元,假定每月銷售件數(shù)y()與價格x(元/件)之間滿足一次函數(shù).

1)試求yx之間的函數(shù)關(guān)系式.

2)在商品不積壓且不考慮其他因素的條件下,銷售價格定為多少時,才能使每月的毛利潤w最大?每月的最大毛利潤為多少?

3)若要使某月的毛利潤為1800元,售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點,點的坐標(biāo)為

1)求一次函數(shù)的解析式

2)已知雙曲線在第一象限上有一點到軸的距離為3,求的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸于,兩點,與軸交于點.連接.

1)求拋物線的解析式和點的坐標(biāo);

2若點為第四象限內(nèi)拋物線上一動點,點的橫坐標(biāo)為,的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值;

3)拋物線的對稱軸上是否存在點,使為等腰三角形?若存在,請直接寫出所有點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 11×16 的網(wǎng)格圖中,△ABC 三個頂點坐標(biāo)分別為 A(﹣4,0),B(﹣1,1),C(﹣2,3).

(1)請畫出△ABC 沿x 軸正方向平移4個單位長度所得到的△A1B1C1;

(2)以原點O為位似中心,將(1)中的△A1B1C1 放大為原來的3倍得到△A2B2C2,請在第一象限內(nèi)畫出△A2B2C2,并直接寫出△A2B2C2 三個頂點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖1,在以O為原點的平面直角坐標(biāo)系中,拋物線yx2+bx+cx軸交于A,B兩點,與y軸交于點C0,﹣1),連接AC,AO2CO,直線l過點G0t)且平行于x軸,t<﹣1

1)求拋物線對應(yīng)的二次函數(shù)的解析式;

2)若D(﹣4,m)為拋物線yx2+bx+c上一定點,點D到直線l的距離記為d,當(dāng)dDO時,求t的值.

3)如圖2,若E(﹣4,m)為上述拋物線上一點,在拋物線上是否存在點F,使得△BEF是直角三角形,若存在求出點F的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca≠0)的頂點坐標(biāo)為(2,﹣1),圖象與y軸交于點C0,3),與x軸交于A、B兩點.

1)求拋物線的解析式;

2)設(shè)拋物線對稱軸與直線BC交于點D,連接AC、AD,點E為直線BC上的任意一點,過點Ex軸的垂線與拋物線交于點F,問是否存在點E使DEF為直角三角形?若存在,求出點E坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某風(fēng)景區(qū)內(nèi)有一古塔AB,在塔的北面有一建筑物,當(dāng)光線與水平面的夾角是30°時,塔在建筑物的墻上留下了高3米的影子CD;而當(dāng)光線與地面的夾角是45°時,塔尖A在地面上的影子E與墻角C15米的距離(B、E、C在一條直線上),求塔AB的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC內(nèi)接于⊙O,且AB=AC,⊙O的半徑為6cm ,OBC的距離為2cm,AB的長.

查看答案和解析>>

同步練習(xí)冊答案