【題目】如圖,在某月的日歷上,圈出,,5個數(shù),使它們呈一個十字架.

(1)如果它的和為55,求的值;

(2)如果它們的和為115,求D的值;

(3)這五個數(shù)的和可以是125嗎?

【答案】118;(2)16;(3)不可以,理由見解析

【解析】

1)由于日歷上一個豎列上相鄰3個數(shù)依次間隔7,可以設(shè)豎列上相鄰的3個數(shù)為x-7,x,x+7,由此得到方程x-7+x+x+7+x-1+x+1=55,解方程根據(jù)方程的解即可;

2)由于日歷上一個豎列上相鄰3個數(shù)依次間隔7,可以設(shè)豎列上相鄰的3個數(shù)為x-7,x,x+7,由此得到方程x-7+x+x+7+x-1+x+1=115,解方程根據(jù)方程的解即可;

3)由于日歷上一個豎列上相鄰3個數(shù)依次間隔7,可以設(shè)豎列上相鄰的3個數(shù)為x-7,x,x+7,由此得到方程x-7+x+x+7+x-1+x+1=125,解方程根據(jù)方程的解即可.

(1)設(shè)豎列上相鄰的3個數(shù)為x7x,x+7,則B=x1C=x+1,根據(jù)題意得出:

x7+x+x+7+x1+x+1=55,

解得:x=11,

E=x+7=18

答:E的值為18;

(2)(1)得出:設(shè)豎列上相鄰的3個數(shù)為x7,x,x+7,則B=x1,C=x+1,根據(jù)題意得出:

x7+x+x+7+x1+x+1=115,

解得:x=23,

D=237=16,

答:D的值為16;

(3)(1)得出:

設(shè)豎列上相鄰的3個數(shù)為x7,x,x+7,則B=x1,C=x+1,根據(jù)題意得出:

x7+x+x+7+x1+x+1=125,

解得x=25,

x+25=7+25=32,日期不可能大于31,

故不可能五個數(shù)的和是125.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在A,E之間掛一些彩旗,請你求出AE之間的距離.

(參考數(shù)據(jù):sin22°,cos22°tan22°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABCDEC重合放置,其中,.

1)操作發(fā)現(xiàn)

①固定,使繞點C旋轉(zhuǎn).當(dāng)點D恰好落在AB邊上時(如圖2);線段DEAC的位置關(guān)系是________,請證明;

②設(shè)的面積為的面積為,則的數(shù)量關(guān)系是________.

2)猜想論證

當(dāng)繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中的數(shù)量關(guān)系仍然成立,請你分別作出BC、CE邊上的高,并由此證明小明的猜想.

3)拓展探究

己知,點D是其角平分線上一點,,BC于點E(如圖4),請問在射線BA上是否存在點F,使,若存在,請直接寫出符合條件的點F的個數(shù),若不存在,請說明理由.

1 2

3 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、cRtABCRtBED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個根且四邊形ACDE的周長是,ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

1 (配方法)

2(因式分解法)

3 公式法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)牛場原有大牛30頭和小牛15頭,一天約用飼料675kg.一周后又購進(jìn)12頭大牛和5頭小牛,這時1天約用飼料940kg.飼養(yǎng)員李大叔估計每頭大牛1天約需飼料1820kg,每頭小牛1天約需飼料78kg,你能通過計算檢驗他的估計嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,E、F 是平行四邊形 ABCD 的對角線 AC 上的兩點,AE=CF

求證:(1EB DF ;

2EBDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,過C軸于B

1)三角形ABC的面積_____________

2)如圖2,過By軸于D,且AEDE分別平分∠CAB,∠ODB,求∠AED的度數(shù);

3)點Py軸上,使得三角形ABC和三角形ACP的面積相等,直接寫出P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.

查看答案和解析>>

同步練習(xí)冊答案