【題目】如圖1,在平面直角坐標(biāo)系中,,過C作軸于B.
(1)三角形ABC的面積_____________;
(2)如圖2,過B作交y軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);
(3)點P在y軸上,使得三角形ABC和三角形ACP的面積相等,直接寫出P點坐標(biāo).
【答案】(1)4;(2)45°;(3)P(0,-1)或(0,3)
【解析】
(1)根據(jù)點的坐標(biāo),可以得到AB、BC的長度,然后計算面積;
(2)過E作EF∥AC,根據(jù)平行線性質(zhì)得BD∥AC∥EF,且∠3=∠CAB=∠1,∠4=∠ODB=∠2,所以∠AED=∠1+∠2=(∠CAB+∠ODB);然后把∠CAB+∠ODB=∠5+∠6=90°,代入計算即可.
(3)分類討論:設(shè)P(0,t),分P在y軸正半軸上時或在y軸負半軸時,過P作MN∥x軸,AN∥y軸,BM∥y軸,利用S△APC=S梯形MNAC-S△ANP-S△CMP=4,可得到關(guān)于t的方程,再解方程求出t即可;
解:(1)∵,
∴B(2,0),
∴AB=4,BC=2,
∴三角形ABC的面積.
故答案為:4.
(2)解:如圖,過E作
軸,,
∴
∴
∵,
∴
∵AE,DE分別平分
∴
∴;
(3)設(shè)P(0,t),過P作MN∥x軸,AN∥y軸,BM∥y軸,
①當(dāng)P在y軸正半軸上時,如圖1,
∵
∴ ×4×(t+t-2)- ×2t- ×2×(t-2)=4,
解得:t=3,
∴P點的坐標(biāo)為:(0,3);
②當(dāng)P在y軸負半軸上時,如圖2,
∵
∴×4(-t+2-t)+×2t-×2(2-t)=4,
解得:t=-1,
∴P點的坐標(biāo)為:(0,-1);
∴綜上所述,P點坐標(biāo)為:(0,-1)或(0,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,“和諧號”高鐵列車的小桌板收起時,小桌板的支架底端與桌面頂端的距離OA=75厘米,且可以近似看作與地面垂直.展開小桌板使桌面保持水平,此時CB⊥AO,∠AOB=∠ACB=37°,且支架長OB與桌面寬BC的長度之和等于OA的長度.求小桌板桌面的寬度BC.(參考數(shù)據(jù), , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某月的日歷上,圈出,,,,,5個數(shù),使它們呈一個十字架.
(1)如果它的和為55,求的值;
(2)如果它們的和為115,求D的值;
(3)這五個數(shù)的和可以是125嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,后解答:
(1)由根式的性質(zhì)計算下列式子得:
①=3,②,③,④=5,⑤=0.
由上述計算,請寫出的結(jié)果(a為任意實數(shù)).
(2)利用(1)中的結(jié)論,計算下列問題的結(jié)果:
①;
②化簡:(x<2).
(3)應(yīng)用:
若=3,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將A,B兩點向右平移1個單位,再向上平移2個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD.
(1)求點C,D的坐標(biāo);
(2)若點P在直線BD上運動,連接PC,PO.
①若點P在線段BD上(不與B,D重合)時,求S△CDP+S△BOP的取值范圍;
②若點P在直線BD上運動,試探索∠CPO,∠DCP,∠BOP的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查學(xué)生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學(xué)生進行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析。下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績的頻數(shù)分布統(tǒng)計表如下:
(說明:成績80分及以上為優(yōu)秀,7079分為良好,6069分為合格,60分以下為不合格)
b.甲校成績在70x<80這一組的是:70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:
根據(jù)以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測試中,某學(xué)生的成績是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是___校的學(xué)生(填“甲”或“乙”),理由是___;
(3)假設(shè)乙校800名學(xué)生都參加此次測試,估計成績優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級共有800名學(xué)生,準(zhǔn)備調(diào)查他們對“低碳”知識的了解程度.
(1)在確定調(diào)查方式時,團委設(shè)計了以下三種方案:
方案一:調(diào)查八年級部分女生;
方案二:調(diào)查八年級部分男生;
方案三:到八年級每個班去隨機調(diào)查一定數(shù)量的學(xué)生.
請問其中最具有代表性的一個方案是_____;
(2)團委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將兩個統(tǒng)計圖補充完整;
(3)請你估計該校八年級約有多少名學(xué)生比較了解“低碳”知識.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將二次函數(shù)y=x2-m(其中m>0)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,形成新的圖象記為y1,另有一次函數(shù)y=x+b的圖象記為y2,則以下說法:
①當(dāng)m=1,且y1與y2恰好有三個交點時b有唯一值為1;
②當(dāng)b=2,且y1與y2恰有兩個交點時,m>4或0<m<;
③當(dāng)m=-b時,y1與y2一定有交點;
④當(dāng)m=b時,y1與y2至少有2個交點,且其中一個為(0,m).
其中正確說法的序號為 ______ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com