【題目】如圖,在△AOB中,AO=AB,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(2,2),點(diǎn)O的坐標(biāo)是(0,0),將△AOB平移得到△A′O′B′,使得點(diǎn)A′y軸上.點(diǎn)O′、B′x軸上.則點(diǎn)B'的坐標(biāo)是______

【答案】2,0

【解析】

直接利用平移中點(diǎn)的變化規(guī)律求解即可.平移中點(diǎn)的變化規(guī)律是:橫坐標(biāo)右移加,左移減;縱坐標(biāo)上移加,下移減.

AO=AB,點(diǎn)A的橫坐標(biāo)為2,

OB=4B的坐標(biāo)為(4,0),

要想讓點(diǎn)O'、B'還在x軸上,只能左右平移.

∵點(diǎn)A的坐標(biāo)是(2,2),移動到y軸上時,坐標(biāo)變?yōu)椋?/span>0,2),說明點(diǎn)A向左平了2個單位,即橫坐標(biāo)減2

B點(diǎn)也遵循點(diǎn)A的移動規(guī)律,則點(diǎn)B'的坐標(biāo)是(20).

故答案為:(2,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AD=2AB,FAD的中點(diǎn),作CEAB,垂足E在線段AB上(E不與A、B重合),連接EF、CF,則下列結(jié)論中一定成立的是 ( )

①∠DCF=BCD;EF=CF;;④∠DFE=4AEF

A. ①②③④ B. ①②③ C. ①② D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的布袋里裝有4個標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機(jī)取出一個小球,記下數(shù)字為x,小紅在剩下的3個小球中隨機(jī)取出一個小球,記下數(shù)字為y

(1)計算由x、y確定的點(diǎn)(x,y)在函數(shù)y=﹣x+5的圖象上的概率.

(2)小明和小紅約定做一個游戲,其規(guī)則為:若x、y滿足xy6,則小明勝;若x、y滿足xy6,則小紅勝,這個游戲公平嗎?請說明理由;若不公平,請寫出公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個單位為1的方格紙上,A1A2A3,A3A4A5,A5A6A7,,是斜邊在x軸上、斜邊長分別為24,6的等腰直角三角形.若A1A2A3的頂點(diǎn)坐標(biāo)分別為A1(2,0)A2(1,-1),A3(0,0),則依圖中所示規(guī)律,A2017的橫坐標(biāo)為( )

A. 1010 B. 2 C. 1 D. ﹣1006

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(1)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤恚?/span>

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

1)甲隊成績的中位數(shù)是  分,乙隊成績的眾數(shù)是  分;

2)計算乙隊的方差;

3)已知甲隊成績的方差是1.4,則成績較為整齊的是  隊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們已經(jīng)知道(ab)2≥0,即a22ab+b2≥0.所以a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時取等號)

閱讀1:若a、b為實數(shù),且a0,b0

∵()2≥0a2+b≥0,a+b≥2(當(dāng)且僅當(dāng)a=b時取等號)

閱讀2:若函數(shù)y=x(m0,x0,m為常數(shù)).由閱讀1結(jié)論可知:xx當(dāng)xx2=m,x=(m0)時,函數(shù)y=x的最小值為2

閱讀理解上述內(nèi)容,解答下列問題:

問題1:當(dāng)x0時,的最小值為    ;當(dāng)x0時,的最大值為    

問題2:函數(shù)y=a+(a1)的最小值為    

問題3:求代數(shù)式(m>﹣2)的最小值,并求出此時的m的值.

問題4:如圖,四邊形ABCD的對角線AC,BD相交于點(diǎn)O,AOBCOD的面積分別為416,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是ABC的角平分線,以AD為弦的O交AB、AC于E、F,已知EF∥BC.

(1)求證:BC是O的切線;

(2)若已知AE=9,CF=4,求DE長;

(3)在(2)的條件下,若BAC=60°,求tanAFE的值及GD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AD=2AB,EBC的中點(diǎn),連結(jié)AE并延長交DC的延長線于點(diǎn)F

1)求證:DEAF

2)若∠B=60°,DE=4,求AB的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,ADBC,AD=24cm,BC=30cm,點(diǎn)P從A向點(diǎn)D以1cm/s的速度運(yùn)動,到點(diǎn)D即停止.點(diǎn)Q從點(diǎn)C向點(diǎn)B以2cm/s的速度運(yùn)動,到點(diǎn)B即停止.直線PQ將四邊形ABCD截得兩個四邊形,分別為四邊形ABQP和四邊形PQCD,則當(dāng)P,Q兩點(diǎn)同時出發(fā),幾秒后所截得兩個四邊形中,其中一個四邊形為平行四邊形?

查看答案和解析>>

同步練習(xí)冊答案