【題目】如圖所示,矩形中,厘米,厘米().動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā),分別沿,運(yùn)動(dòng),速度是厘米/秒.過(guò)作直線垂直于,分別交,于.當(dāng)點(diǎn)到達(dá)終點(diǎn)時(shí),點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)若厘米,秒,求PM的長(zhǎng)度;
(2)若厘米,求出某個(gè)時(shí)間,使⊿PNB∽⊿PAD,并求出它們的相似比;
(3)若在運(yùn)動(dòng)過(guò)程中,存在某時(shí)刻使梯形PMBN與梯形PQDA的面積相等,求的取值范圍;
【答案】(1)(2),使,相似比為
(3),
【解析】
(1)容易知道△ANB∽△APM,利用相似三角形的對(duì)應(yīng)邊成比例就可以求出PM;
(2)若PNB∽△PAD,則,而,∴,則可求出t,也可以求出相似比;
(3)首先用△AMP∽△ABN把QM,PM用t表示,再用t表示梯形PMBN與梯形PQDA的面積,根據(jù)已知可以得到關(guān)于t的方程,再由t與a的關(guān)系式可以求t的取值范圍了;
(4)由(3)根據(jù)梯形PQCN的面積與梯形PMBN的面積相等得到關(guān)于t的方程,求出t,再求出a,則問(wèn)題可解.
解:(1)當(dāng)t=1時(shí),MB=1,NB=1,AM=4-1=3,
∵PM∥BN
∴△ANB∽△APM,
∴,
∴PM=
(2)當(dāng)t=2時(shí),使△PNB∽△PAD,
∴,
∵,
∴
∴
解得t=2,則相似比為2:3.
(3),
⊿APM∽⊿ABN ,
,
即:
∴
當(dāng)梯形與梯形的面積相等,即
化簡(jiǎn)得,
,
,
則,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在2×2的正方形網(wǎng)格中,小正方形的邊長(zhǎng)均為1,△ABC與△ADE的頂點(diǎn)都在格點(diǎn)上.
(1)求證:△ABC∽△ADE;
(2)求∠MDA+∠NDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線:y=-x(x-2)(0≤x≤2)記為C1 ,它與x軸交于兩點(diǎn)O,A;將C1繞點(diǎn)A旋轉(zhuǎn)180°得到C2 , 交x軸于A1;將C2繞點(diǎn)A1旋轉(zhuǎn)180°得到C3 , 交x軸于點(diǎn)A2 . .....如此進(jìn)行下去,直至得到C2018 , 若點(diǎn)P(4035,m)在第2018段拋物線上,則m的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)為了改善居住環(huán)境,準(zhǔn)備修建一個(gè)巨型花園ABCD,為了節(jié)約材料并種植不同花卉,決定花園一邊靠墻,三邊用柵欄圍住,中間用一段垂直于墻的柵欄隔成兩塊.已知所用柵欄的總長(zhǎng)為60米,墻長(zhǎng)為30米,設(shè)花園垂直于墻的一邊的長(zhǎng)為米.
(1)若平行于墻的一邊長(zhǎng)為米,直接寫出與的函數(shù)關(guān)系式及自變量的取值范圍;
(2)當(dāng)為何值時(shí),這個(gè)矩形花園的面積最大?最大值為多少?(柵欄占地面積忽略不計(jì))
(3)當(dāng)這個(gè)花園的面積不小于288平方米時(shí),試結(jié)合函數(shù)圖象,直接寫出的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E為AD的中點(diǎn),已知△DEF的面積為S,則四邊形ABCE的面積為( )
A. 8S B. 9S C. 10S D. 11S
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為實(shí)施國(guó)家“營(yíng)養(yǎng)早餐”工程,食堂用甲、乙兩種原料配制成某種營(yíng)養(yǎng)食品,已知這兩種原料的維生素C含量及購(gòu)買這兩種原料的價(jià)格如表:
原科維生素C及價(jià)格 | 甲種原料 | 乙種原料 |
維生素c(單位/千克) | 600 | 400 |
原料價(jià)格(元/千克) | 9 | 5 |
現(xiàn)要配制這種營(yíng)養(yǎng)食品20千克,設(shè)購(gòu)買甲種原料x千克,購(gòu)買這兩種原料的總費(fèi)用為y元.
(1)求y與x的函數(shù)關(guān)系式?
(2)若食堂要求營(yíng)養(yǎng)食品每千克至少含有480單位的維生素C,試說(shuō)明需要購(gòu)買甲種原料多少千克時(shí),總費(fèi)用最少?最少費(fèi)用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c 如圖所示,直線x=-1是其對(duì)稱軸,
(1)確定a,b,c, Δ=b2-4ac的符號(hào),
(2)求證:a-b+c>0,
(3)當(dāng)x取何值時(shí),y>0;當(dāng)x取何值時(shí)y<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿足即將到來(lái)的春節(jié)市場(chǎng)需求,某超市購(gòu)進(jìn)一種品牌的食品,每盒進(jìn)價(jià)為30元,根據(jù)往年的銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒50元時(shí),每天可賣出100盒,每降價(jià)1元,每天可多賣出10盒,超市規(guī)定售價(jià)不低于40元/盒,不高于50元/盒.
(1)求每天的銷售利潤(rùn)W(元)與每盒降價(jià)x(元)之間的函數(shù)關(guān)系式(注明自變量的取值范圍);
(2)當(dāng)每盒售價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?
(3)若要使每天的銷售利潤(rùn)不低于2090元,那么每盒的售價(jià)應(yīng)定在什么范圍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B、C、D為矩形的4個(gè)頂點(diǎn),AB=16cm,BC=6cm,動(dòng)點(diǎn)P、Q分別以3cm/s、2cm/s的速度從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C向點(diǎn)D移動(dòng).
(1)若點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)B停止,點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),問(wèn)經(jīng)過(guò)2s時(shí)P、Q兩點(diǎn)之間的距離是多少cm?
(2)若點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)B停止,點(diǎn)Q隨點(diǎn)P的停止而停止移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間P、Q兩點(diǎn)之間的距離是10cm?
(3)若點(diǎn)P沿著AB→BC→CD移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C移動(dòng)到點(diǎn)D停止時(shí),點(diǎn)P隨點(diǎn)Q的停止而停止移動(dòng),試探求經(jīng)過(guò)多長(zhǎng)時(shí)間△PBQ的面積為12cm2?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com