【題目】如圖,A、B、C、D為矩形的4個頂點,AB=16cm,BC=6cm,動點P、Q分別以3cm/s、2cm/s的速度從點A、C同時出發(fā),點Q從點C向點D移動.
(1)若點P從點A移動到點B停止,點P、Q分別從點A、C同時出發(fā),問經(jīng)過2s時P、Q兩點之間的距離是多少cm?
(2)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發(fā),問經(jīng)過多長時間P、Q兩點之間的距離是10cm?
(3)若點P沿著AB→BC→CD移動,點P、Q分別從點A、C同時出發(fā),點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經(jīng)過多長時間△PBQ的面積為12cm2?
【答案】(1)PQ=6cm;(2)s或s;(3)經(jīng)過4秒或6秒△PBQ的面積為 12cm2.
【解析】
試題(1)作PE⊥CD于E,表示出PQ的長度,利用PE2+EQ2=PQ2列出方程求解即可;
(2)設(shè)x秒后,點P和點Q的距離是10cm.在Rt△PEQ中,根據(jù)勾股定理列出關(guān)于x的方程(16-5x)2=64,通過解方程即可求得x的值;
(3)分類討論:①當(dāng)點P在AB上時;②當(dāng)點P在BC邊上;③當(dāng)點P在CD邊上時.
試題解析:(1)過點P作PE⊥CD于E.
則根據(jù)題意,得
EQ=16-2×3-2×2=6(cm),PE=AD=6cm;
在Rt△PEQ中,根據(jù)勾股定理,得
PE2+EQ2=PQ2,即36+36=PQ2,
∴PQ=6cm;
∴經(jīng)過2s時P、Q兩點之間的距離是6cm;
(2)設(shè)x秒后,點P和點Q的距離是10cm.
(16-2x-3x)2+62=102,即(16-5x)2=64,
∴16-5x=±8,
∴x1=,x2=;
∴經(jīng)過s或sP、Q兩點之間的距離是10cm;
(3)連接BQ.設(shè)經(jīng)過ys后△PBQ的面積為12cm2.
①當(dāng)0≤y≤時,則PB=16-3y,
∴PBBC=12,即×(16-3y)×6=12,
解得y=4;
②當(dāng)<x≤時,
BP=3y-AB=3y-16,QC=2y,則
BPCQ=(3y-16)×2y=12,
解得y1=6,span>y2=-(舍去);
③<x≤8時,
QP=CQ-PQ=22-y,則
QPCB=(22-y)×6=12,
解得y=18(舍去).
綜上所述,經(jīng)過4秒或6秒△PBQ的面積為 12cm2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形中,厘米,厘米().動點同時從點出發(fā),分別沿,運動,速度是厘米/秒.過作直線垂直于,分別交,于.當(dāng)點到達終點時,點也隨之停止運動.設(shè)運動時間為秒.
(1)若厘米,秒,求PM的長度;
(2)若厘米,求出某個時間,使⊿PNB∽⊿PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=5,AC=3,點P為邊AB上一動點(且點P不與點A,B重合),PE⊥BC于E,PF⊥AC于F,點M為EF中點,則PM的最小值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A′B′C,M是BC的中點,P是A′B′的中點,連接PM,若BC=2,∠BAC=30°,則線段PM的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC=6,BD=8,M、N分別是BC、CD上的動點,P是線段BD上的一個動點,則PM+PN的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,點E在BC延長線上,EC=BC,連接DE,AC,AC⊥AD于點A、
(1)求證:四邊形ACED是矩形;
(2)連接BD,交AC于點F.若AC=2AD,猜想∠E與∠BDE的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:
設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時,為“不稱職”,當(dāng) 時為“基本稱職”,當(dāng) 時為“稱職”,當(dāng) 時為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:
(1)補全折線統(tǒng)計圖和扇形統(tǒng)計圖;
(2)求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);
(3)為了調(diào)動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標(biāo)準(zhǔn),凡月銷售額達到或超過這個標(biāo)準(zhǔn)的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)校門前有座山,山上有一電線桿PQ,他很想知道電線桿PQ 的高度.于是,有一天,小明和他的同學(xué)小亮帶著側(cè)傾器和皮尺來到山腳下進行測量.測量方案如下:如圖,首先,小明站在地面上的點A處,測得電線桿頂端點P的仰角是45;然后小明向前走6米到達點B處,測得電線桿頂端點P和電線桿底端點Q的仰角分別是60和30,設(shè)小明的眼睛到地面的距離為1.6米.請根據(jù)以上測量的數(shù)據(jù),計算電線桿PQ的高度(結(jié)果精確到1米)參考數(shù)據(jù):.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:
那么關(guān)于它的圖象,下列判斷正確的是( 。
A. 開口向上 B. 與x軸的另一個交點是(3,0)
C. 與y軸交于負(fù)半軸 D. 在直線x=1的左側(cè)部分是下降的
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com