【題目】用各種盛水容器可以制作精致的家用流水景觀(如圖1).
科學(xué)原理:如圖2,始終盛滿水的圓體水桶水面離地面的高度為H(單位:m),如果在離水面豎直距離為h(單校:cm)的地方開(kāi)大小合適的小孔,那么從小孔射出水的射程(水流落地點(diǎn)離小孔的水平距離)s(單位:cm)與h的關(guān)系為s2=4h(H—h).
應(yīng)用思考:現(xiàn)用高度為20cm的圓柱體望料水瓶做相關(guān)研究,水瓶直立地面,通過(guò)連注水保證它始終盛滿水,在離水面豎直距高h cm處開(kāi)一個(gè)小孔.
(1)寫出s2與h的關(guān)系式;并求出當(dāng)h為何值時(shí),射程s有最大值,最大射程是多少?
(2)在側(cè)面開(kāi)兩個(gè)小孔,這兩個(gè)小孔離水面的豎直距離分別為a,b,要使兩孔射出水的射程相同,求a,b之間的關(guān)系式;
(3)如果想通過(guò)墊高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔離水面的豎直距離.
【答案】(1),當(dāng)時(shí),;(2)或;(3)墊高的高度為16cm,小孔離水面的豎直距離為18cm
【解析】
(1)將s2=4h(20-h)寫成頂點(diǎn)式,按照二次函數(shù)的性質(zhì)得出s2的最大值,再求s2的算術(shù)平方根即可;
(2)設(shè)存在a,b,使兩孔射出水的射程相同,則4a(20-a)=4b(20-b),利用因式分解變形即可得出答案;
(3)設(shè)墊高的高度為m,寫出此時(shí)s2關(guān)于h的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)可得答案.
解:(1)∵s2=4h(H-h),
∴當(dāng)H=20時(shí),s2=4h(20-h)=-4(h-10)2+400,
∴當(dāng)h=10時(shí),s2有最大值400,
∴當(dāng)h=10時(shí),s有最大值20cm.
∴當(dāng)h為何值時(shí),射程s有最大值,最大射程是20cm;
故答案為:最大射程是20cm.
(2) ∵s2=4h(20-h),
設(shè)存在a,b,使兩孔射出水的射程相同,則有:
4a(20-a)=4b(20-b),
∴20a-a2=20b-b2,
∴a2-b2=20a-20b,
∴(a+b)(a-b)=20(a-b),
∴(a-b)(a+b-20)=0,
∴a-b=0或a+b-20=0,
∴a=b或a+b=20.
故答案為:a=b或a+b=20.
(3)設(shè)墊高的高度為m,則
∴當(dāng)時(shí),
∴時(shí),此時(shí)
∴墊高的高度為16cm,小孔離水面的豎直距離為18cm.
故答案為:墊高的高度為16cm,小孔離水面的豎直距離為18cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與x軸的交點(diǎn)為A、D(A在D的右側(cè)),與y軸的交點(diǎn)為C.
(1)直接寫出A、D、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為B,在拋物線上是否存在點(diǎn)P,使得以A、B、C、P四點(diǎn)為頂點(diǎn)的四邊形為梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC和△DCE都是等邊三角形.
探究發(fā)現(xiàn)
(1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請(qǐng)說(shuō)明理由.
拓展運(yùn)用
(2)若B、C、E三點(diǎn)不在一條直線上,∠ADC=30°,AD=3,CD=2,求BD的長(zhǎng).
(3)若B、C、E三點(diǎn)在一條直線上(如圖2),且△ABC和△DCE的邊長(zhǎng)分別為1和2,求△ACD的面積及AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上,OC=3,OA=,D是BC的中點(diǎn),將△OCD沿直線OD折疊后得到△OGD,延長(zhǎng)OG交AB于點(diǎn)E,連接DE,則點(diǎn)G的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四塊大正方形地磚和一塊小正方形地磚拼成如圖所示的實(shí)線圖案,每塊大正方形地磚面積為a,小正方形地磚面積為依次連接四塊大正方形地磚的中心得到正方形ABCD.則正方形ABCD的面積為____________(用含a,b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的頂點(diǎn)是A(1,3),將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后得到OB,點(diǎn)B恰好在拋物線上,OB與拋物線的對(duì)稱軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)P是線段AC上一動(dòng)點(diǎn),且不與點(diǎn)A,C重合,過(guò)點(diǎn)P作平行于x軸的直線,與的邊分別交于M,N兩點(diǎn),將以直線MN為對(duì)稱軸翻折,得到.
設(shè)點(diǎn)P的縱坐標(biāo)為m.
①當(dāng)在內(nèi)部時(shí),求m的取值范圍;
②是否存在點(diǎn)P,使,若存在,求出滿足m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A(3,0)和點(diǎn)B(2,3),過(guò)點(diǎn)A的直線與y軸的負(fù)半軸相交于點(diǎn)C,且tan∠CAO=.
(1)求這條拋物線的表達(dá)式及對(duì)稱軸;
(2)聯(lián)結(jié)AB、BC,求∠ABC的正切值;
(3)若點(diǎn)D在x軸下方的對(duì)稱軸上,當(dāng)S△DBC=S△ADC時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線交x軸于A、B兩點(diǎn),其中點(diǎn)A坐標(biāo)為,與y軸交于點(diǎn)C,且對(duì)稱軸在y軸的左側(cè),拋物線的頂點(diǎn)為P.
(1)當(dāng)時(shí),求拋物線的頂點(diǎn)坐標(biāo);
(2)當(dāng)時(shí),求b的值;
(3)在(1)的條件下,點(diǎn)Q為x軸下方拋物線上任意一點(diǎn),點(diǎn)D是拋物線對(duì)稱軸與x軸的交點(diǎn),直線、分別交拋物線的對(duì)稱軸于點(diǎn)M、N.請(qǐng)問(wèn)是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線x+6與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,直線AB交x軸于點(diǎn)B,將△AOB沿直線AB折疊,點(diǎn)O恰好落在直線AD上的點(diǎn)C處.
(1)求OB的長(zhǎng);
(2)如圖2,F,G是直線AB上的兩點(diǎn),若△DFG是以FG為斜邊的等腰直角三角形,求點(diǎn)F的坐標(biāo);
(3)如圖3,點(diǎn)P是直線AB上一點(diǎn),點(diǎn)Q是直線AD上一點(diǎn),且P,Q均在第四象限,點(diǎn)E是x軸上一點(diǎn),若四邊形PQDE為菱形,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com