【題目】為了迎接新中國成立六十周年,某中學(xué)九年級(jí)組織了《祖國在我心》征文比賽,共收到一班、二班、三班、四班參賽學(xué)生的文章共100(參賽學(xué)生每人只交一篇),下面扇形統(tǒng)計(jì)圖描述了各班參賽學(xué)生占總?cè)藬?shù)的百分比情況(尚不完整).比賽一、二等獎(jiǎng)若干,結(jié)果全年級(jí)25人獲獎(jiǎng),其中三班參賽學(xué)生的獲獎(jiǎng)率為20%,一、二、三、四班獲獎(jiǎng)人數(shù)的比為67a5.

(1)填空:①四班有______人參賽,α=______°.

a=______,各班獲獎(jiǎng)學(xué)生數(shù)的眾數(shù)是______.

(2)獲一等獎(jiǎng)、二等獎(jiǎng)的學(xué)生每人分別得到價(jià)值100元、60元的學(xué)習(xí)用品,購買這批獎(jiǎng)品共用去1900元,問一等獎(jiǎng)、二等獎(jiǎng)的學(xué)生人數(shù)分別是多少?

【答案】(1)25,90°;7,7;(2)10,15.

【解析】

1),①,先用1減去其它三班所占的百分率,即可得到四班所占的百分率;

用四班所占的百分率乘以總數(shù)即可求出四班參賽人數(shù),再用所占百分率乘以360°就得到α的度數(shù);

②先求出三班的參數(shù)人數(shù),繼而乘以獲獎(jiǎng)率即可求出三班獲獎(jiǎng)的人數(shù),再根據(jù)四個(gè)班獲獎(jiǎng)人數(shù)比,求出x的值,至此可得到各班獲獎(jiǎng)學(xué)生數(shù)的眾數(shù);

(2),設(shè)獲一二等獎(jiǎng)的學(xué)生人數(shù)分別為x,y,根據(jù)共有25人和共用去1900元,可以列方程組即可求得答案.

1)1-20%-20%-35%=25%,

則(4)班參賽人數(shù)有100×25%=25(人),

α=360×25%=90°;

(3)班參賽人數(shù)有100×35%=35(人),

獲獎(jiǎng)?wù)哂?/span>35×20%=7(人),

因?yàn)椋?/span>1)(2)(3)(4)班獲獎(jiǎng)人數(shù)為6:7:x:5,所以x=7,

即一、二、三、四班獲獎(jiǎng)人數(shù)分別為6,7,7,5.

所以各班獲獎(jiǎng)學(xué)生數(shù)的眾數(shù)是7;

(2)設(shè)獲一、二等獎(jiǎng)的學(xué)生人數(shù)分別為x,y,則

x+y=25100 x+60y=1900,

解得:x=10,y=15.

答:獲一、二等獎(jiǎng)學(xué)生人數(shù)分別為10人,15.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一張長方形ABCD紙張中,一邊BC折疊后落在對(duì)角線BD上,點(diǎn)E為折痕與邊CD的交點(diǎn),若AB=5,BC=12,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】生活中很多礦泉水沒有喝完便被扔掉,造成極大的浪費(fèi),為此數(shù)學(xué)興趣小組的同學(xué)對(duì)某單位的某次會(huì)議所用礦泉水的浪費(fèi)情況進(jìn)行調(diào)查,為期半天的會(huì)議中,每人發(fā)一瓶500ml的礦泉水,會(huì)后對(duì)所發(fā)礦泉水喝的情況進(jìn)行統(tǒng)計(jì),大至可分為四種:A全部喝完;B喝剩約;C喝剩約一半;D開瓶但基本未喝.同學(xué)們根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)參加這次會(huì)議的有多少人?在圖(2)中D所在扇形的圓心角是多少度?并補(bǔ)全條形統(tǒng)計(jì)圖;(計(jì)算結(jié)果請(qǐng)保留整數(shù)).

2)若開瓶但基本未喝算全部浪費(fèi),試計(jì)算這次會(huì)議平均每人浪費(fèi)的礦泉水約多少毫升?

3)據(jù)不完全統(tǒng)計(jì),該單位每年約有此類會(huì)議60次,每次會(huì)議人數(shù)約在4060人之間,請(qǐng)用(2)中計(jì)算的結(jié)果,估計(jì)該單位一年中因此類會(huì)議浪費(fèi)的礦泉水(500ml/瓶)約有多少?(可使用科學(xué)計(jì)算器)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)在實(shí)施居民用水額定管理前,對(duì)居民生活用水情況進(jìn)行了調(diào)查,下表是通過簡單隨機(jī)抽樣獲得的50個(gè)家庭去年月平均用水量(單位:噸),并將調(diào)查數(shù)據(jù)進(jìn)行如下整理:

4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7

4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5

3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2

5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5

4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5

頻數(shù)分布表

分組

劃記

頻數(shù)

2.0x≤3.5

正正

11

3.5x≤5.0


19

5.0x≤6.5



6.5x≤8.0



8.0x≤9.5


2

合計(jì)


50

1)把上面頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

2)從直方圖中你能得到什么信息?(寫出兩條即可);

3)為了鼓勵(lì)節(jié)約用水,要確定一個(gè)用水量的標(biāo)準(zhǔn),超出這個(gè)標(biāo)準(zhǔn)的部分按1.5倍價(jià)格收費(fèi),若要使60%的家庭收費(fèi)不受影響,你覺得家庭月均用水量應(yīng)該定為多少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六一兒童節(jié)前夕,蘄黃縣教育局準(zhǔn)備給留守兒童贈(zèng)送一批學(xué)習(xí)用品,先對(duì)浠泉鎮(zhèn)浠泉小學(xué)的留守兒童人數(shù)進(jìn)行抽樣統(tǒng)計(jì),發(fā)現(xiàn)各班留守兒童人數(shù)分別為6名,7名,8名,10名,12名這五種情形,并將統(tǒng)計(jì)結(jié)果繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)上述統(tǒng)計(jì)圖,解答下列問題:

(1)該校有多少個(gè)班級(jí)?并補(bǔ)全條形統(tǒng)計(jì)圖.

(2)該校平均每班有多少名留守兒童?留守兒童人數(shù)的眾數(shù)是多少?

(3)若該鎮(zhèn)所有小學(xué)共有60個(gè)教學(xué)班,請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)該鎮(zhèn)小學(xué)生中,共有多少名留守兒童.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉興市2010~2014年社會(huì)消費(fèi)品零售總額及增速統(tǒng)計(jì)圖如下

請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)求嘉興市2010~2014年社會(huì)消費(fèi)品零售總額增速這組數(shù)據(jù)的中位數(shù).

(2)求嘉興市近三年(2012~2014)的社會(huì)消費(fèi)品零售總額這組數(shù)據(jù)的平均數(shù).

(3)用適當(dāng)?shù)姆椒A(yù)測(cè)嘉興市2015年社會(huì)消費(fèi)品零售總額(只要求列出算式,不必計(jì)算出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)了圖形的旋轉(zhuǎn)知識(shí)后,數(shù)學(xué)興趣小組的同學(xué)們又進(jìn)一步對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了探究.

(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請(qǐng)直接寫出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關(guān)系為
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)發(fā)現(xiàn):

如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=aAB=b

填空:當(dāng)點(diǎn)A位于     時(shí),線段AC的長取得最大值,且最大值為     (用含ab的式子表示)

(2)應(yīng)用:

點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CDBE

①請(qǐng)找出圖中與BE相等的線段,并說明理由;

②直接寫出線段BE長的最大值.

(3)拓展:

如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫出線段AM長的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案