【題目】在學(xué)習(xí)了圖形的旋轉(zhuǎn)知識(shí)后,數(shù)學(xué)興趣小組的同學(xué)們又進(jìn)一步對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了探究.
(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請直接寫出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關(guān)系為 .
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長線上時(shí),其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說明理由.
【答案】
(1)30;BE+DF=EF
(2)解:如圖3,在BE上截取BG=DF,連接AG,
在△ABG和△ADF中,
,
∴△ABG≌△ADF(SAS),
∴∠BAG=∠DAF,且AG=AF,
∵∠DAF+∠DAE=30°,
∴∠BAG+∠DAE=30°,
∵∠BAD=60°,
∴∠GAE=60°﹣30°=30°,
∴∠GAE=∠FAE,
在△GAE和△FAE中,
,
∴△GAE≌△FAE(SAS),
∴GE=FE,
又∵BE﹣BG=GE,BG=DF,
∴BE﹣DF=EF,
即線段BE、EF、FD之間的數(shù)量關(guān)系為BE﹣DF=EF
(二)拓展延伸
如圖4,在等邊△ABC中,E、F是邊BC上的兩點(diǎn),∠EAF=30°,BE=1,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△A′B′E′(A′B′與AC重合),連接EE′,AF與EE′交于點(diǎn)N,過點(diǎn)A作AM⊥BC于點(diǎn)M,連接MN,求線段MN的長度.
解:如圖4,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△A′B′E′,則
AE=AE′,∠EAE′=60°,
∴△AEE′是等邊三角形,
又∵∠EAF=30°,
∴AN平分∠EAF,
∴AN⊥EE′,
∴直角三角形ANE中, = ,
∵在等邊△ABC中,AM⊥BC,
∴∠BAM=30°,
∴ = ,且∠BAE+∠EAM=30°,
∴ = ,
又∵∠MAN+∠EAM=30°,
∴∠BAE=∠MAN,
∴△BAE∽△MAN,
∴ = ,即 = ,
∴MN=
【解析】解:(一)(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′,則
∠1=∠2,BE=DE′,AE=AE′,
∵∠BAD=60°,∠EAF=30°,
∴∠1+∠3=30°,
∴∠2+∠3=30°,即∠FAE′=30°
∴∠EAF=∠FAE′,
在△AEF和△AE′F中,
,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,即EF=DF+DE′,
∴EF=DF+BE,即線段BE、EF、FD之間的數(shù)量關(guān)系為BE+DF=EF,
所以答案是:30,BE+DF=EF;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用相似三角形的判定與性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點(diǎn)連線EF為邊正方形EFGH的周長為( )
A.
B.2
C.
+1
D.2 +1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接新中國成立六十周年,某中學(xué)九年級(jí)組織了《祖國在我心》征文比賽,共收到一班、二班、三班、四班參賽學(xué)生的文章共100篇(參賽學(xué)生每人只交一篇),下面扇形統(tǒng)計(jì)圖描述了各班參賽學(xué)生占總?cè)藬?shù)的百分比情況(尚不完整).比賽一、二等獎(jiǎng)若干,結(jié)果全年級(jí)25人獲獎(jiǎng),其中三班參賽學(xué)生的獲獎(jiǎng)率為20%,一、二、三、四班獲獎(jiǎng)人數(shù)的比為6∶7∶a∶5.
(1)填空:①四班有______人參賽,α=______°.
②a=______,各班獲獎(jiǎng)學(xué)生數(shù)的眾數(shù)是______.
(2)獲一等獎(jiǎng)、二等獎(jiǎng)的學(xué)生每人分別得到價(jià)值100元、60元的學(xué)習(xí)用品,購買這批獎(jiǎng)品共用去1900元,問一等獎(jiǎng)、二等獎(jiǎng)的學(xué)生人數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公園內(nèi)兩條小河MO、NO在O處匯合,如圖所示,兩河形成的平地上要建一個(gè)小百貨店,使小百貨店到兩岸邊距離相等,到兩河交匯處距離300米,百貨店的位置該怎樣確定?請你按10000:1的比例,在圖中確定百貨店的位置,并估算一下,它到河邊的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】威麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進(jìn)多少件A種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,點(diǎn)M,N分別是邊BC,CD上的動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),AM,AN分別交BD于點(diǎn)E,F(xiàn),且∠MAN始終保持45°不變.
(1)求證: = ;
(2)求證:AF⊥FM;
(3)請?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當(dāng)∠BAM等于多少度時(shí),∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點(diǎn)E,F(xiàn),且∠EAF=60°.
(1)如圖1,當(dāng)點(diǎn)E是線段CB的中點(diǎn)時(shí),直接寫出線段AE,EF,AF之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點(diǎn)E是線段CB上任意一點(diǎn)時(shí)(點(diǎn)E不與B、C重合),求證:BE=CF;
(3)如圖3,當(dāng)點(diǎn)E在線段CB的延長線上,且∠EAB=15°時(shí),求點(diǎn)F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求證:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明到離家2.1千米的學(xué)校參加八年級(jí)聯(lián)歡會(huì),到學(xué)校時(shí)發(fā)現(xiàn)演出道具還放在家中,此時(shí)距聯(lián)歡會(huì)開始還有42分鐘,于是他立即步行(勻速)回家,在家拿道具用了1分鐘,然后立即騎自行車(勻速)返回學(xué)校,已知李明騎自行車到學(xué)校比他從學(xué)校步行到家用時(shí)少20分鐘,且騎自行車的速度是步行速度的3倍。
(1)李明步行的速度(單位:米/分)是多少?
(2)李明能否在聯(lián)歡會(huì)開始前趕到學(xué)校?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com