【題目】小華是花店的一名花藝師,她每天都要為花店制作普通花束和精致花束,她每月工作20天,每天工作8小時(shí),她的工資由基本工資和提成工資兩部分構(gòu)成,每月的基本工資為l800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作兩種花束的數(shù)量與所用時(shí)間的關(guān)系見下表:

制作普通花束(束)

制作精致花束(束)

所用時(shí)間(分鐘)

10

25

600

15

30

750

請(qǐng)根據(jù)以上信息,解答下列問題:

1)小華每制作一束普通花束和每制作一束精致花束分別需要多少分鐘?

2201911月花店老板要求小華本月制作普通花束的總時(shí)間不少于3000分鐘且不超過5000分鐘,則小華該月收入最多是多少元?此時(shí)小華本月制作普通花束和制作精致花束分別是多少束?

【答案】1)小華每制作一束普通花束需要10分鐘,每制作一束精致花束需要20分鐘;(2)小華該月收入W最多是4050元,此時(shí)小華本月制作普通花束300束,制作精致花束330束.

【解析】

1)設(shè)小華每制作一束普通花束需要m分鐘,每制作一束精致花束需要n分鐘,根據(jù)小華制作兩種花束的數(shù)量與所用時(shí)間的關(guān)系表,即可得出關(guān)于mn的二元一次方程組,解之即可得出結(jié)論;
2)根據(jù)小華本月的總收入=基本工資+制作花束的數(shù)量×每束的提成,即可得出W關(guān)于x的函數(shù)關(guān)系式,再利用一次函數(shù)的性質(zhì)即可解決最值問題.

1)設(shè)小華每制作一束普通花束需要m分鐘,每制作一束精致花束需要n分鐘,
依題意,得: ,
解得:
答:小華每制作一束普通花束需要10分鐘,每制作一束精致花束需要20分鐘.
220×8×60=9600(分鐘).
依題意,得:W=1800+2× +42003000≤x≤5000).
- 0,
W的值隨x值的增大而減小,
∴當(dāng)x=3000時(shí),W取得最大值,最大值為4050元.
3000÷10=300(束),
9600-3000÷20=330(束).
答:小華該月收入W最多是4050元,此時(shí)小華本月制作普通花束300束,制作精致花束330束.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標(biāo)系中的位置如圖所示,則下列結(jié)論中,正確的是(  )

A. ac<0 B. a+b+c<0 C. b2﹣4ac<0 D. b=8a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公園里有一人設(shè)了個(gè)游戲攤位,游客只需擲一枚正方體骰子,如果出現(xiàn)3點(diǎn),就可獲得價(jià)值10元的獎(jiǎng)品,每拋擲1次骰子只需付1元的費(fèi)用.小明在攤位前觀察了很久,記下了游客的中獎(jiǎng)情況:

游客

1

2

3

4

5

6

7

拋擲次數(shù)

30

20

25

6

16

50

12

中獎(jiǎng)次數(shù)

1

0

0

1

0

2

0

看了小明的記錄,你有什么看法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB是⊙O的切線.

(2)已知AO交⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D,tanD=,求的值.

(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點(diǎn)DAB的中點(diǎn).

(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1s后,BPDCQP是否全等,請(qǐng)說明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿ABC三邊運(yùn)動(dòng),求經(jīng)過多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有 個(gè)選項(xiàng),第二道單選題有個(gè)選項(xiàng),這兩道題小明都不會(huì),不過小明還有一個(gè)“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

)如果小明第一題不使用“求助”,那么小明答對(duì)第一道題的概率是__________.

)如果小明將“求助”留在第二題使用,請(qǐng)用樹狀圖或者列表來分析小明通關(guān)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)M在射線CE上,點(diǎn)G在線段CD上,EDFG交于點(diǎn)H,∠C=∠3,∠1=∠2

1)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;

2)若∠EHF80°,∠D30°,求∠AEM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB1,BC3

1)在圖中,PBC上一點(diǎn),EF垂直平分AP,分別交AD、BC邊于點(diǎn)E、F,求證:四邊形AFPE是菱形;

2)在圖中利用直尺和圓規(guī)作出面積最大的菱形,使得菱形的四個(gè)頂點(diǎn)都在矩形ABCD的邊上,并直接標(biāo)出菱形的邊長(zhǎng).(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P垂直于AC的直線交菱形ABCD的邊于M、N兩點(diǎn)設(shè)AC=2BD=1,AP=xCMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是( )

查看答案和解析>>

同步練習(xí)冊(cè)答案