【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=ax﹢b的圖象交于C(4,﹣3),E(﹣3,4)兩點(diǎn).且一次函數(shù)圖象交y軸于點(diǎn)A.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求△COE的面積;
(3)點(diǎn)M在x軸上移動(dòng),是否存在點(diǎn)M使△OCM為等腰三角形?若存在,請你直接寫出M點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1)一次函數(shù)的解析式為y=﹣x+1.
(2)S△COE=S△AOE+S△AOC=×1×3+×1×4=3.5.
(3)點(diǎn)M坐標(biāo)為M1(8,0)或M2(5,0)或M3(﹣5,0)或M4(,0).
【解析】
試題分析:(1)點(diǎn)C(4,﹣3)坐標(biāo)代入反比例函數(shù)y=即可求出k,C(4,﹣3),E(﹣3,4)兩點(diǎn)坐標(biāo)代入y=ax+b解方程組即可求出a、b.由此即可解決問題.
(2)先求出點(diǎn)A坐標(biāo),根據(jù)S△COE=S△AOE+S△AOC計(jì)算即可.
(3)分三種情形①當(dāng)CM=OC時(shí),可得M1(8,0).②當(dāng)OC=OM時(shí),可得M2(5,0),M3(﹣5,0).②當(dāng)MC=MO時(shí),設(shè)M4(x,0),則有x2=(x﹣4)2+32,解方程即可.
試題解析:(1)∵反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C(4,﹣3),
∴﹣3=,∴k=﹣12,∴反比例函數(shù)解析式為y=﹣,
∵y=ax+b的圖象經(jīng)過C(4,﹣3),E(﹣3,4)兩點(diǎn),
∴,解得,∴一次函數(shù)的解析式為y=﹣x+1.
(2)∵一次函數(shù)的解析式為y=﹣x+1與y軸交于點(diǎn)A(0,1),∴S△COE=S△AOE+S△AOC=×1×3+×1×4=3.5.
(3)如圖,∵C(4,﹣3),∴OC==5,
①當(dāng)CM=OC時(shí),可得M1(8,0).②當(dāng)OC=OM時(shí),可得M2(5,0),M3(﹣5,0).
②當(dāng)MC=MO時(shí),設(shè)M4(x,0),則有x2=(x﹣4)2+32,解得x=,∴M4(,0).
綜上所述,點(diǎn)M坐標(biāo)為M1(8,0)或M2(5,0)或M3(﹣5,0)或M4(,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第二十四屆冬季奧林匹克運(yùn)動(dòng)會(huì)將與2022年2月20日在北京舉行,北京將成為歷史上第一座舉辦過夏奧會(huì)又舉辦過冬奧會(huì)的城市,東寶區(qū)舉辦了一次冬奧會(huì)知識網(wǎng)上答題競賽,甲、乙兩校各有400名學(xué)生參加活動(dòng),為了解這兩所學(xué)校的成績情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.
(收集數(shù)據(jù))
從甲、乙兩校各隨機(jī)抽取20名學(xué)生,在這次競賽中它們的成績?nèi)缦拢?/span>
甲 | 30 | 60 | 60 | 70 | 60 | 80 | 30 | 90 | 100 | 60 |
60 | 100 | 80 | 60 | 70 | 60 | 60 | 90 | 60 | 60 | |
乙 | 80 | 90 | 40 | 60 | 80 | 80 | 90 | 40 | 80 | 50 |
80 | 70 | 70 | 70 | 70 | 60 | 80 | 50 | 80 | 80 |
(整理、描述數(shù)據(jù))按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
(說明:優(yōu)秀成績?yōu)?/span>80<x≤100,良好成績?yōu)?/span>50<x≤80,合格成績?yōu)?/span>30≤x≤50.)
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 67 | 60 | 60 |
乙 | 70 | 75 | a |
30≤x≤50 | 50<x≤80 | 80<x≤100 | |
甲 | 2 | 14 | 4 |
乙 | 4 | 14 | 2 |
(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如右表所示:其中a= .
(得出結(jié)論)
(1)小偉同學(xué)說:“這次競賽我得了70分,在我們學(xué)校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是 校的學(xué)生;(填“甲”或“乙”)
(2)老師從乙校隨機(jī)抽取一名學(xué)生的競賽成績,試估計(jì)這名學(xué)生的競賽成績?yōu)閮?yōu)秀的概率為 ;
(3)根據(jù)以上數(shù)據(jù)推斷一所你認(rèn)為競賽成績較好的學(xué)校,并說明理由.(至少從兩個(gè)不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),與y軸交于點(diǎn)B,與拋物線的對稱軸交于點(diǎn).
(1)求m的值;
(2)求拋物線的頂點(diǎn)坐標(biāo);
(3)是線段AB上一動(dòng)點(diǎn),過點(diǎn)N作垂直于y軸的直線與拋物線交于點(diǎn),(點(diǎn)P在點(diǎn)Q的左側(cè)).若恒成立,結(jié)合函數(shù)的圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC內(nèi)接于⊙O,AD⊥BC于點(diǎn)D,連接AO.
(1)如圖1,求證:∠BAO=∠CAD;
(2)如圖2,CE⊥AB于點(diǎn)E,交AD于點(diǎn)F,過點(diǎn)O作OH⊥BC于點(diǎn)H,求證:AF=2OH;
(3)如圖3,在(2)的條件下,若AF=AO,tan∠BAO=,BC=,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,∠C=90°,AB=5,BC=3,S、Q兩點(diǎn)同時(shí)分別從A、C出發(fā),點(diǎn)S以每秒2個(gè)單位的速度沿著AC向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿著CB向點(diǎn)B運(yùn)動(dòng).當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng)
(1)求幾秒時(shí)SQ的長為2
(2)求幾秒時(shí),△SQC的面積最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B以2cm/s的速度移動(dòng),點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A以1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6),那么:
(1)當(dāng)t為何值時(shí),△QAP是等腰直角三角形?
(2)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)斜拋物體的水平運(yùn)動(dòng)距離為x(m),對應(yīng)的高度記為h(m),且滿足h=ax2+bx﹣2a(其中a≠0).已知當(dāng)x=0時(shí),h=2;當(dāng)x=10時(shí),h=2.
(1)求h關(guān)于x的函數(shù)表達(dá)式;
(2)求斜拋物體的最大高度和達(dá)到最大高度時(shí)的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)D在半圓O上,AB=13,AD=5,C是弧BD上的一個(gè)動(dòng)點(diǎn),連接AC,過D點(diǎn)作DH⊥AC于H.連接BH,在點(diǎn)C移動(dòng)的過程中,BH的最小值是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com