【題目】如圖,AB是⊙O的直徑,BM切⊙O于點B,點P是⊙O上的一個動點(P不與AB兩點重合),連接AP,過點OOQAPBM于點Q,過點PPEAB于點C,交QO的延長線于點E,連接PQ,OP

(1)求證:△BOQ≌△POQ;

(2)若直徑AB的長為12

①當(dāng)PE   時,四邊形BOPQ為正方形;

②當(dāng)PE   時,四邊形AEOP為菱形.

【答案】1)見解析;(2)①6,②6

【解析】

(1)根據(jù)切線的性質(zhì)得∠OBQ90°,再根據(jù)平行線的性質(zhì)得∠APO=∠POQ,∠OAP=∠BOQ,加上∠OPA=∠OAP,則∠POQ=∠BOQ,于是根據(jù)SAS可判斷△BOQ≌△POQ

(2)①利用△BOQ≌△POQ得到∠OPQ=∠OBQ90°,由于OBOP,所以當(dāng)∠BOP90°,四邊形OPQB為正方形,此時點C、點E與點O重合,于是PEPO6;②根據(jù)菱形的判定,當(dāng)OCAC,PCEC,四邊形AEOP為菱形,則OCOA3,然后利用勾股定理計算出PC,從而得到PE的長.

(1)證明:∵BM切⊙O于點B,

OBBQ,

∴∠OBQ90°,

PAOQ,

∴∠APO=∠POQ,∠OAP=∠BOQ,

OAOP

∴∠OPA=∠OAP,

∴∠POQ=∠BOQ,

在△BOQ和△POQ

,

∴△BOQ≌△POQ;

(2)解:①∵△BOQ≌△POQ,

∴∠OPQ=∠OBQ90°,

當(dāng)∠BOP90°,四邊形OPQB為矩形,

OBOP,則四邊形OPQB為正方形,此時點C、點E與點O重合,PEPOAB6;

②∵PEAB,

∴當(dāng)OCACPCEC,四邊形AEOP為菱形,

OCOA3

PC,

PE2PC6

故答案為66

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線軸交于點兩點,與軸交于點

1)求該拋物線的解析式;

2)在該拋物線的對稱軸上是否存在點,使得的周長最。咳舸嬖,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ADBC中,∠ACB=ADB=90°AD=BD,探究線段ACBC,CD之間的數(shù)量關(guān)系.

小吳同學(xué)探究此問題的思路是:將BCD繞點D,逆時針旋轉(zhuǎn)90°AED處,點B,C分別落在點AE處(如圖②),易證點C,AE在同一條直線上,并且CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD

簡單應(yīng)用:

1)在圖①中,若AC=2,BC=4,則CD=

2)如圖③,AB是⊙O的直徑,點C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的長.

拓展規(guī)律:

3)如圖4,ABC中,∠ACB=90°,AC=BC,點PAB的中點,若點E滿足AE=AC,CE=CA,且點E在直線AC的左側(cè)時,點QAE的中點,則線段PQAC的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,瓊海市在國際和國內(nèi)的知名度越來越大,帶動旅游事業(yè)蓬勃發(fā)展,吸引大批海內(nèi)外游客前來觀光旅游、購物度假,下面的圖12分別反映了該市2011-2014年游客總?cè)藬?shù)和旅游業(yè)總收入情況.根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

12014年游客總?cè)藬?shù)為 萬人次,旅游業(yè)總收入為 萬元;

2)在2012年,2013年,2014年這三年中,旅游業(yè)總收入增長幅度最大的是 年,這一年的旅游業(yè)總收入比上一年增長的百分率為 (精確到1%);

3)據(jù)統(tǒng)計,2014年瓊海共接待國內(nèi)游客1200萬人,人均消費約700元.求海外游客人均消費約多少元?(注:旅游收入=游客人數(shù)×游客的人均消費)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(3,0),說法:①abc0;②2ab0;③﹣a+c0;④若(5,y1)(,y2)是拋物線上兩點,則y1y2,其中說法正確的有(  )個.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A1,A2,…,A2019在函數(shù)y=x2位于第二象限的圖象上,點B1B2,…,B2011在函數(shù)y=x2位于第一象限的圖象上,點C1,C2,…,C2019y軸的正半軸上,若四邊形OA1C1B1、C1A2C2B2,…,C2018A2019C2019B2019都是正方形,則正方形C2018A2019C2019B2019的邊長_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將拋物線M1yax2+4x向右平移3個單位,再向上平移3個單位,得到拋物線M2,直線yxM1的一個交點記為A,與M2的一個交點記為B,點A的橫坐標(biāo)是﹣3

1)求a的值及M2的表達式;

2)點C是線段AB上的一個動點,過點Cx軸的垂線,垂足為D,在CD的右側(cè)作正方形CDEF

當(dāng)點C的橫坐標(biāo)為2時,直線yx+n恰好經(jīng)過正方形CDEF的頂點F,求此時n的值;

在點C的運動過程中,若直線yx+n與正方形CDEF始終沒有公共點,求n的取值范圍(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出如下規(guī)定:兩個圖形,點上任一點,點上任一點,如果線段的長度存在最小值,就稱該最小值為兩個圖形之間的距離.

在平面直角坐標(biāo)系xOy中,0為坐標(biāo)原點.

1)點的坐標(biāo)為,則點和射線之間的距離為______,點和射線之間的距離為    

2)如果直線和雙曲線之間的距離為,那么____;(可在圖1中進行研究)

3)點的坐標(biāo)為,將射線繞原點逆時針旋轉(zhuǎn),得到射線,在坐標(biāo)平面內(nèi)所有和射線之間的距離相等的點所組成的圖形記為圖形

①請在圖2中畫出圖形,井描述圖形的組成部分:(若涉及平面中某個區(qū)域時可以用陰影表示)

②將射線組成的圖形記為圖形,拋物線與圖形的公共部分記為圖形,請直接寫出圖形和圖形之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點PABC內(nèi)部或邊上的點(頂點除外),在PABPBC,PCA中,若至少有一個三角形與ABC相似,則稱點PABC的自相似點.

例如:圖1,PABC的內(nèi)部,PBC=A,PCB=ABC,BCP∽△ABC,故PABC的自相似點.

請你運用所學(xué)知識,結(jié)合上述材料,解決下列問題:

在平面直角坐標(biāo)系中,M曲線C上的任意一點,點Nx軸正半軸上的任意一點.

(1) 如圖2,點P是OM上一點,ONP=M, 試說明點P是MON的自相似點; 當(dāng)M的坐標(biāo)是,N的坐標(biāo)是時,求點P 的坐標(biāo);

(2) 如圖3,當(dāng)M的坐標(biāo)是,N的坐標(biāo)是時,求MON的自相似點的坐標(biāo);

(3) 是否存在點M和點N,使MON無自相似點,?若存在,請直接寫出這兩點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案