【題目】如圖,在中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線//BC,分別交,外角的平分線于點(diǎn)E、F.
(1)猜想與證明,試猜想線段OE與OF的數(shù)量關(guān)系,并說(shuō)明理由.
(2)連接AE,AF,問(wèn):當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.
(3)若AC邊上存在一點(diǎn)O,使四邊形AECF是正方形,猜想的形狀并證明你的結(jié)論.
【答案】(1)OE=OF,理由見(jiàn)解析.
(2)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AECF是矩形;
理由見(jiàn)解析.
(3)△ABC是直角三角形;證明見(jiàn)解析.
【解析】
(1)根據(jù)CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根據(jù)等邊對(duì)等角得OE=OC,同理OC=OF,可得EO=FO.
(2)利用矩形的判定解答,即有一個(gè)內(nèi)角是直角的平行四邊形是矩形.
(3)利用已知條件及正方形的性質(zhì)問(wèn)題可解.
(1)證明:∵CE是∠ACB的平分線,
∴∠ACE=∠BCE,
∵MN∥BC,
∴∠BCE=∠E,
∴∠ACE=∠E,
∴OE=OC,
同理可證OC=OF,
∴OE=OF;
(2)解:如圖
當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AECF是矩形.
理由是:當(dāng)O為AC的中點(diǎn)時(shí),AO=CO,
∵EO=FO,
∴四邊形AECF是平行四邊形,
∵CE平分∠ACB,CF平分∠ACG,
∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,
∴平行四邊形AECF是矩形.
(3)△ABC是直角三角形
理由是:∵四邊形AECF是正方形,
∴AC⊥EN,故∠AOM=90°,
∵MN∥BC,
∴∠BCA=∠AOM,
∴∠BCA=90°,
∴△ABC是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)要求,解答下列問(wèn)題.
(1)解方程組: .
(2)解下列方程組,只寫(xiě)出最后結(jié)果即可:①;②.
(3)以上每個(gè)方程組的解中,x值與y值有怎樣的大小關(guān)系?
(4)觀察以上每個(gè)方程組的外形特征,請(qǐng)你構(gòu)造一個(gè)具有此特征的方程組,并用(3)中的結(jié)論快速求出其解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為正方形ABCD對(duì)角線AC上一動(dòng)點(diǎn),EF⊥AC且交AD于E,交CD的延長(zhǎng)線于點(diǎn)G,連接CE和AG.
(1)求證:△ADG≌△CDE;
(2)當(dāng)CE平分∠ACD時(shí),求tan∠AGD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小楊一家三人隨旅游團(tuán)去九寨溝旅游,小楊把旅途的費(fèi)用支出情況制成了如圖所示的統(tǒng)計(jì)圖.
(1)哪一部分的費(fèi)用占整個(gè)支出的?
(2)若他們共交給旅行社8600元,則在食宿上用去多少元?
(3)以上條件不變,這一家往返的路費(fèi)共多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,P為Rt△ABC所在平面內(nèi)任意一點(diǎn)(不在直線AC上),∠ACB=90°,M為AB邊中點(diǎn).操作:以PA、PC為鄰邊作平行四邊形PADC,連結(jié)PM并延長(zhǎng)到點(diǎn)E,使ME=PM,連結(jié)DE.
(1)請(qǐng)你利用圖2,選擇Rt△ABC內(nèi)的任意一點(diǎn)P按上述方法操作;
(2)經(jīng)歷(1)之后,觀察兩圖形,猜想線段DE和線段BC之間有怎樣的數(shù)量和位置關(guān)系?請(qǐng)選擇其中的一個(gè)圖形證明你的猜想;
(3)觀察兩圖,你還可得出AC和DE相關(guān)的什么結(jié)論?請(qǐng)說(shuō)明理由.
(4)若以A為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,其中A、C、D的坐標(biāo)分別為(0,0),(5,3),(4,2),能否在平面內(nèi)找到一點(diǎn)M,使以A、C、D、M為點(diǎn)構(gòu)造成平行四邊形,若不能,說(shuō)明理由,若能,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQCD是平行四邊形?
(2)經(jīng)過(guò)多長(zhǎng)時(shí)間,四邊形PQBA是矩形?
(3)經(jīng)過(guò)多長(zhǎng)時(shí)間,當(dāng)PQ不平行于CD時(shí),有PQ=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知A(0,-2),B(-2,1),C(3,2)
(1)求線段AB、BC、AC的長(zhǎng);
(2)把A、B、C三點(diǎn)的橫坐標(biāo)、縱坐標(biāo)都乘以2,得到A′、B′、C′的坐標(biāo),求A′B′、B′C′、A′C′的長(zhǎng);
(3)以上六條線段成比例嗎?
(4)△ABC與△A′B′C′的形狀相同嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BA到D,使∠BDC=30°.
(1)求證:DC是⊙O的切線;
(2)若AB=2,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,為上一點(diǎn),,垂足為,垂足為.下列四三個(gè)結(jié)論中:①;②;③;④其中正確的是____________(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com