【題目】如圖所示,在梯形ABCD中,ADBC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發(fā)沿AD方向向點D1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B3cm/s的速度運動.點P、Q分別從點A和點C同時出發(fā),當其中一點到達端點時,另一點隨之停止運動.

1)經(jīng)過多長時間,四邊形PQCD是平行四邊形?

2)經(jīng)過多長時間,四邊形PQBA是矩形?

3)經(jīng)過多長時間,當PQ不平行于CD時,有PQ=CD

【答案】(1)6s;(2) s;(3)7s.

【解析】

1)設經(jīng)過ts時,四邊形PQCD是平行四邊形,根據(jù)DP=CQ,代入后求出即可;

2)設經(jīng)過ts時,四邊形PQBA是矩形,根據(jù)AP=BQ,代入后求出即可;

3)設經(jīng)過ts),四邊形PQCD是等腰梯形,利用EP=2列出有關(guān)t的方程求解即可.

1)設經(jīng)過ts),四邊形PQCD為平行四邊形

PD=CQ

所以24-t=3t,

解得:t=6

2)設經(jīng)過ts),四邊形PQBA為矩形,

AP=BQ,

所以t=26-3t

解得:t=

3)設經(jīng)過ts),四邊形PQCD是等腰梯形.

Q點作QEAD,過D點作DFBC,

∴∠QEP=DFC=90°

∵四邊形PQCD是等腰梯形,

PQ=DC

又∵ADBC,∠B=90°,

AB=QE=DF

RtEQPRtFDC中,

RtEQPRtFDCHL).

FC=EP=BC-AD=26-24=2

又∵AE=BQ=26-3t,

EP=AP-AE=t-26-3t=2

得:t=7

∴經(jīng)過7sPQ=CD

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知等邊三角形ABC和等邊三角形DBC有公共邊BC,以圖中某個點為旋轉(zhuǎn)中心,旋轉(zhuǎn)DBC使它和ABC重合,則旋轉(zhuǎn)中心可以是________(寫出一個旋轉(zhuǎn)中心即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019423日世界讀書日這天,濱江初二年級的學生會,就2018年寒假讀課外書數(shù)量(單位:本)做了調(diào)查,他們隨機調(diào)查了甲、乙兩個班的10名同學,調(diào)查過程如下

收集數(shù)據(jù)

甲、乙兩班被調(diào)查者讀課外書數(shù)量(單位:本)統(tǒng)計如下:

甲:19,74,23,32,72

乙:2,6,63,16,5,25,4

整理、描述數(shù)據(jù)繪制統(tǒng)計表如下,請補全下表:

班級

平均數(shù)

眾數(shù)

中位數(shù)

方差

4

3

6

3.2

分析數(shù)據(jù)、推斷結(jié)論

1)該校初二乙班共有40名同學,你估計讀6本書的同學大概有_____人;

2)你認為哪個班同學寒假讀書情況更好,寫出理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州市教育行政部門為了了解八年級學生每學期參加綜合實踐活動的情況,隨機調(diào)查了部分學生,并將他們一學期參加綜合實踐活動的天數(shù)進行統(tǒng)計,繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:

(1)參加調(diào)查的八年級學生總?cè)藬?shù)為_______人;

(2)根據(jù)圖中信息,補全條形統(tǒng)計圖;扇形統(tǒng)計圖中活動時間為4的扇形所對應的圓心角的度數(shù)為_______;

(3)如果全市共有八年級學生6000人,請你估計活動時間不少于4的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點O是邊AC上一個動點,過點O作直線//BC,分別交,外角的平分線于點EF.

1)猜想與證明,試猜想線段OEOF的數(shù)量關(guān)系,并說明理由.

2)連接AE,AF,問:當點O在邊AC上運動時到什么位置時,四邊形AECF是矩形?并說明理由.

3)若AC邊上存在一點O,使四邊形AECF是正方形,猜想的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”.將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為F(n).例如n=123,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為213+321+132=666,666÷111=6,所以F(123)=6.
(1)計算:F(243),F(xiàn)(617);
(2)若s,t都是“相異數(shù)”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整數(shù)),規(guī)定:k= ,當F(s)+F(t)=18時,求k的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:①(﹣2)101+(﹣2)100=﹣2100;②20172+2017一定可以被2018整除;③16.9× +15.1×能被4整除;兩個連續(xù)奇數(shù)的平方差是8的倍數(shù).其中說法正確的個數(shù)是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圖1中,A1,B1C1分別是ABC的邊BC,CAAB的中點,在圖2中,A2,B2C2分別是A1B1C1的邊B1C1,C1A1,A1B1的中點,,按此規(guī)律,則第n個圖形中平行四邊形的個數(shù)共有___個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(1,0),(3,0),現(xiàn)同時將點AB分別向上平移2個單位,再向右平移1個單位,分別得到點A,.B 的對應點C,D,連接AC,BD,CD.

(1)求點CD的坐標及四邊形ABDC的面積S四邊形ABDC;

(2) y軸上是否存在一點P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案