【題目】已知函數(shù)f(x)=|x﹣2|+|2x+a|,a∈R. (Ⅰ)當(dāng)a=1時,解不等式f(x)≥5;
(Ⅱ)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.

【答案】解:(Ⅰ)當(dāng)a=1時,f(x)=|x﹣2|+|2x+1|,. 由f(x)≥5得x﹣2|+|2x+1|≥5.
當(dāng)x≥2時,不等式等價于x﹣2+2x+1≥5,解得x≥2,所以x≥2;
當(dāng)﹣ <x<2時,不等式等價于2﹣x+2x+1≥5,即x≥2,所以此時不等式無解;當(dāng)x≤﹣ 時,不等式等價于2﹣x﹣2x﹣1≥5,解得x≤﹣ ,所以x≤﹣ 所以原不等式的解集為(﹣∞,﹣ ]∪[2,+∞).
(Ⅱ)f(x)+|x﹣2|=2|x﹣2|+|2x+a|=|2x﹣4|+|2x+a|≥|2x+a﹣(2x﹣4)|=|a+4|
因為原命題等價于(f(x)+|x﹣2|)min<3,
所以|a+4|<3,所以﹣7<a<﹣1為所求實數(shù)a的取值范圍
【解析】(Ⅰ)當(dāng)a=1時,根據(jù)絕對值不等式的解法即可解不等式f(x)≥5; (Ⅱ)求出f(x)+|x﹣2|的最小值,根據(jù)不等式的關(guān)系轉(zhuǎn)化為(f(x)+|x﹣2|)min<3即可求a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊ABC的邊長為4cm,動點D從點B出發(fā),沿射線BC方向移動,以AD為邊作等邊ADE

1)在點D運動的過程中,點E能否移動至直線AB上?若能,求出此時BD的長;若不能,請說明理由;

2)如圖2,在點D從點B開始移動至點C的過程中,以等邊ADE的邊AD、DE為邊作ADEF

ADEF的面積是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由;

若點M、N、P分別為AEAD、DE上動點,直接寫出MN+MP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足 ,(n∈N+). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè) ,數(shù)列{bn}的前n項和Sn , 求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,向量 如圖表示,則(
A.?λ>0,使得
B.?λ>0,使得< >=60°
C.?λ<0,使得< >=30°
D.?λ>0,使得 為不為0的常數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏從地出發(fā)向地行走,同時小聰從地出發(fā)向地行走,如圖所示,相交于點 的兩條線段分別表示小敏、小聰離地的距離(km)與已用時間(h)之間的關(guān)系,則________時,小敏、小聰兩人相距7 km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,關(guān)于x的不等式f2(x)+af(x)>0只有兩個整數(shù)解,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)作△ABC關(guān)于原點O成中心對稱的△A1B1C1
(2)請寫出點B關(guān)于y軸對稱的點B2的坐標(biāo) . 若將點B2向下平移h單位,使其落在△A1B1C1內(nèi)部(不包括邊界),直接寫出h的值(寫出滿足的一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的矩形CEFD拼在一起,構(gòu)成一個大的矩形ABEF,現(xiàn)將小矩形CEFD繞點C順時針旋轉(zhuǎn),得到矩形CE′F′D′,旋轉(zhuǎn)角為α.

(1)當(dāng)點D′恰好落在EF邊上時,求旋轉(zhuǎn)角α的值;
(2)如圖2,G為BC的中點,且0°<α<90°,求證:GD′=E′D;

(3)小矩形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,△DCD′與△CBD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系內(nèi)的圖象大致為(  )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案