【題目】已知數列{an}滿足 ,(n∈N+). (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設 ,數列{bn}的前n項和Sn , 求證: .
【答案】解:(I)數列{an}滿足 ,(n∈N+). ∴n≥2時,a1+3a2+…+3n﹣2an﹣1= ,相減可得:3n﹣1an= ,∴an= .
n=1時,a1= .
綜上可得:an= .
(II)證明: ,
∴b1= = .
n≥2時,bn= = .
∴Sn= + + +…+
= + <
【解析】(I)數列{an}滿足 ,(n∈N+).n≥2時,a1+3a2+…+3n﹣2an﹣1= ,相減可得:3n﹣1an= ,可得an . n=1時,a1= .(II) ,b1= .n≥2時,bn= = .利用裂項求和方法與數列的單調性即可得出.
【考點精析】本題主要考查了數列的前n項和和數列的通項公式的相關知識點,需要掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】2016年二十國集團領導人峰會(簡稱“G20峰會”)于9月4日至5日在浙江杭州召開,為保證會議期間交通暢通,杭州市已發(fā)布9月1日至7日為“G20峰會”調休期間.據報道對于杭州市民:浙江省旅游局聯合11個市開展一系列旅游惠民活動,活動內容為:“本省游”、“黃山游”、“黔東南游”,某旅游公司為了解群眾出游情況,擬采用分層抽樣的方法從有意愿“本省游”、“黃山游”、“黔東南游”這三個區(qū)域旅游的群眾中抽取7人進行某項調查,已知有意愿參加“本省游”、“黃山游”、“黔東南游”的群眾分別有360,540,360人.
(1)求從“本省游”、“黃山游”、“黔東南游”,三個區(qū)域旅游的群眾分別抽取的人數;
(2)若從抽得的7人中隨機抽取2人進行調查,用列舉法計算這2人中至少有1人有意愿參加“本省游”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】襄陽農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實驗室每天每100顆種子中的發(fā)芽數,得到如下數據:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數y(顆) | 23 | 26 | 32 | 26 | 16 |
襄陽農科所確定的研究方案是:先從這5組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰的2天數據的概率;
(2)若選取的是12月1日與12月5日這兩組數據,情根據12月2日至12月4日的數據,求y關于x的線性回歸方程 = x+ ;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠? 注: = = , = ﹣ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線x2=2py(p>0)的焦點為F,直線x=4與x軸的交點為P,與拋物線的交點為Q,且 .
(1)求拋物線的方程;
(2)如圖所示,過F的直線l與拋物線相交于A,D兩點,與圓x2+(y﹣1)2=1相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作我校的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓ρ=4cosθ與圓ρ=2sinθ交于O,A兩點. (Ⅰ)求直線OA的斜率;
(Ⅱ)過O點作OA的垂線分別交兩圓于點B,C,求|BC|.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的幾何體中,平面ADNM⊥平面ABCD,四邊形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中點.
(1)求證:平面DEM⊥平面ABM;
(2)在線段AM上是否存在點P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣2|+|2x+a|,a∈R. (Ⅰ)當a=1時,解不等式f(x)≥5;
(Ⅱ)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點A落在點A′處,若A′為CE的中點,則折痕DE的長為( )
A.
B.3
C.2
D.1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com