【題目】如圖,正方形 ABCD 中,點(diǎn) E,F 分別在 BC AB 上,BE3,AF2,BF4,將△ BEF 繞點(diǎn) E 順時(shí)針旋轉(zhuǎn),得到△GEH,當(dāng)點(diǎn) H 落在 CD 邊上時(shí),FH 兩點(diǎn)之間的距離為_____

【答案】6

【解析】

先確定正方形ABCD的邊長AB=6,則CE=3,再利用勾股定理計(jì)算出EF=5,根據(jù)旋轉(zhuǎn)的性質(zhì)得EF=EH=5,接著計(jì)算出CH=4,從而可得到CH=BF,于是可判定四邊形BCHF為矩形,然后利用矩形的性質(zhì)確定FH的長.

正方形ABCD的邊長AB=6,

而BE=3,則CE=3,

在RtBEF中,EF=,

∵△BEF繞點(diǎn)E順時(shí)針旋轉(zhuǎn),得到GEH,

EF=EH=5,

在RtEHC中,CH=,

CH=BF=4,

四邊形BCHF為矩形,

FH=BC=6.

故答案為:6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一筆直的海岸線上有A、B兩上觀測站,AB的正東方向,BP6(單位:km).有一艘小船停在點(diǎn)P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.

1)求A、B兩觀測站之間的距離;

2)小船從點(diǎn)P處沿射線AP的方向進(jìn)行沿途考察,求觀測站B到射線AP的最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PAPB使得△PAB的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班七個(gè)興趣小組人數(shù)分別為4,4,5,5,x,6,7,已知這組數(shù)據(jù)的平均數(shù)是5,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是(  )

A. 4,5 B. 4,4 C. 5,4 D. 5,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校是乒乓球體育傳統(tǒng)項(xiàng)目學(xué)校,為進(jìn)一步推動(dòng)該項(xiàng)目的開展,學(xué)校準(zhǔn)備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個(gè)乒乓球,乒乓球的單價(jià)為2元/個(gè),若購買20副直拍球拍和15副橫拍球拍花費(fèi)9000元;購買10副橫拍球拍比購買5副直拍球拍多花費(fèi)1600元.

(1)求兩種球拍每副各多少元?

(2)若學(xué)校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費(fèi)用最少的方案,并求出該方案所需費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩紙牌游戲,如圖是同一副撲克中的 4 張撲克牌的正面,將它們正面朝下后放在桌上,甲先從中抽出一張,乙從剩余的 3 張牌中也抽出一張.

(1)請用樹狀圖表示出抽牌可能出現(xiàn)的所有結(jié)果.

(2)甲說:“若抽出的兩張牌上的數(shù)是一奇一偶,我獲勝;否則,你獲勝.”或按甲說的規(guī)則進(jìn)行游戲,這個(gè)游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=,OBC邊的中點(diǎn),點(diǎn)E是正方形內(nèi)一動(dòng)點(diǎn),OE=2,連接DE,將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°DF,連接AE,CF.

(1)求證:AE=CF;

(2)若A,E,O三點(diǎn)共線,連接OF,求線段OF的長.

(3)求線段OF長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;BG=GC;AGCF;SFGC=3.其中正確結(jié)論的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形網(wǎng)格放置在平面直角坐標(biāo)系中,其中每個(gè)小正方形的邊長均為1,△ABC經(jīng)過平移后得到△A1B1C1,若AC上一點(diǎn)P(1.2,1.4)平移后對應(yīng)點(diǎn)為P1,點(diǎn)P1繞原點(diǎn)順時(shí)針旋轉(zhuǎn)180°,對應(yīng)點(diǎn)為P2,則點(diǎn)P2的坐標(biāo)為(  )

A. (2.8,3.6) B. (﹣2.8,﹣3.6)

C. (3.8,2.6) D. (﹣3.8,﹣2.6)

查看答案和解析>>

同步練習(xí)冊答案