【題目】我市在創(chuàng)建全國(guó)文明城市過(guò)程中,決定購(gòu)買AB兩種樹(shù)苗對(duì)某路段道路進(jìn)行綠化改造,已知購(gòu)買A種樹(shù)苗8棵,B種樹(shù)苗3棵,需要950元;若購(gòu)買A種樹(shù)苗5棵,B種樹(shù)苗6棵,則需要800元.

1)求購(gòu)買A,B兩種樹(shù)苗每棵各需多少元?

2)考慮到綠化效果和資金周轉(zhuǎn),購(gòu)進(jìn)A種樹(shù)苗不能少于48棵,且用于購(gòu)買這兩種樹(shù)的資金不能超過(guò)7500元,若購(gòu)進(jìn)這兩種樹(shù)苗共100棵,則有哪幾種購(gòu)買方案?

3)某包工隊(duì)承包種植任務(wù),若種好一棵A種樹(shù)苗可獲工錢30元,種好一棵B種樹(shù)苗可獲工錢20元,在第(2)問(wèn)的各種購(gòu)買方案中,種好這100棵樹(shù)苗,哪一種購(gòu)買方案所付的種植工錢最少?最少工錢是多少元?

【答案】(1)購(gòu)買A種樹(shù)苗每棵需100元,購(gòu)買B種樹(shù)苗每棵需50元;(2)購(gòu)買的方案有:購(gòu)進(jìn)A種樹(shù)苗48棵,B種樹(shù)苗52棵; 購(gòu)進(jìn)A種樹(shù)苗49棵,B種樹(shù)苗51棵;購(gòu)進(jìn)A種樹(shù)苗50棵,B種樹(shù)苗50棵;(3)購(gòu)進(jìn)A種樹(shù)苗48棵,B種樹(shù)苗52棵所付工錢最少,最少工錢為2480元.

【解析】

1)設(shè)種樹(shù)苗每棵元,種樹(shù)苗每棵元,根據(jù)“購(gòu)買種樹(shù)苗8棵,種樹(shù)苗3棵,需要950元;若購(gòu)買種樹(shù)苗5棵,種樹(shù)苗6棵,則需要800元”列二元一次方程組求解可得;

2)設(shè)購(gòu)進(jìn)種樹(shù)苗棵,則購(gòu)進(jìn)種樹(shù)苗棵,根據(jù)“種樹(shù)苗不能少于48棵,且用于購(gòu)買這兩種樹(shù)苗的資金不能超過(guò)7500元”列不等式組求解可得;

3)根據(jù)(2)中所得方案,分別計(jì)算得出費(fèi)用即可.

解:(1)(1)設(shè)種樹(shù)苗每棵元,種樹(shù)苗每棵元,

根據(jù)題意,得:,

解得:,

答:種樹(shù)苗每棵100元,種樹(shù)苗每棵50元;

2)設(shè)購(gòu)進(jìn)A種樹(shù)苗m棵,則購(gòu)進(jìn)B種樹(shù)苗(100m)棵,

根據(jù)題意,得:,

解得:48m50,

所以購(gòu)買的方案有:

1、購(gòu)進(jìn)A種樹(shù)苗48棵,B種樹(shù)苗52棵;

2、購(gòu)進(jìn)A種樹(shù)苗49棵,B種樹(shù)苗51棵;

3、購(gòu)進(jìn)A種樹(shù)苗50棵,B種樹(shù)苗50棵;

3)方案1的費(fèi)用為48×30+52×202480元,

方案2的費(fèi)用為49×30+51×202490元,

方案3的費(fèi)用為50×30+50×202500元,

所以購(gòu)進(jìn)A種樹(shù)苗48棵,B種樹(shù)苗52棵所付工錢最少,最少工錢為2480元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市為了答謝顧客,凡在本超市購(gòu)物的顧客,均可憑購(gòu)物小票參與抽獎(jiǎng)活動(dòng),獎(jiǎng)品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(lè)(600ml),抽獎(jiǎng)規(guī)則如下:①如圖,是一個(gè)材質(zhì)均勻可自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)被等分成五個(gè)扇形區(qū)域,每個(gè)區(qū)域上分別寫(xiě)有“可”、“綠”、“樂(lè)”、“茶”、“紅”字樣;②參與一次抽獎(jiǎng)活動(dòng)的顧客可進(jìn)行兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”(當(dāng)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,可獲得指針?biāo)竻^(qū)域的字樣,我們稱這次轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”);③假設(shè)顧客轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,指針指向兩區(qū)域的邊界,顧客可以再轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),直到轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”;④當(dāng)顧客完成一次抽獎(jiǎng)活動(dòng)后,記下兩次指針?biāo)竻^(qū)域的兩個(gè)字,只要這兩個(gè)字和獎(jiǎng)品名稱的兩個(gè)字相同(與字的順序無(wú)關(guān)),便可獲得相應(yīng)獎(jiǎng)品一瓶;不相同時(shí),不能獲得任何獎(jiǎng)品.

根據(jù)以上規(guī)則,回答下列問(wèn)題:

(1)求一次“有效隨機(jī)轉(zhuǎn)動(dòng)”可獲得“樂(lè)”字的概率;

(2)有一名顧客憑本超市的購(gòu)物小票,參與了一次抽獎(jiǎng)活動(dòng),請(qǐng)你用列表或樹(shù)狀圖等方法,求該顧客經(jīng)過(guò)兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”后,獲得一瓶可樂(lè)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,AB=4cm,BC=6cm,現(xiàn)有一動(dòng)點(diǎn)PA出發(fā)以2cm/秒的速度,沿矩形的邊A—B—C—D回到點(diǎn)A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,

(1)當(dāng)t=3秒時(shí),求BP的長(zhǎng);

(2)當(dāng)t為何值時(shí),連接BPAP,△ABP的面積為長(zhǎng)方形的面積三分之一?

(3)QAD邊上的點(diǎn),且DQ=5,當(dāng)t為何值時(shí),以長(zhǎng)方形的兩個(gè)頂點(diǎn)及點(diǎn)P為頂點(diǎn)的三角形與△DCQ全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=30°,點(diǎn)A1,A2,A3在射線ON上,點(diǎn)B1,B2B3,在射線OM上,A1B1A2,A2B2A3,A3B3A4均為等邊三角形.若OA1=1,則AnBnAn+1的邊長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABCD中,EAD的中點(diǎn),CE的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,則下列選項(xiàng)中的結(jié)論錯(cuò)誤的是(  )

A. FA:FB=1:2 B. AE:BC=1:2

C. BE:CF=1:2 D. SABE:SFBC=1:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),在ACM,CBN中,AC=CM,BC=CN,ACM=BCN=60°,連接ANCM于點(diǎn)E,連接BMCN于點(diǎn)F

求證:(1AN=BM.(2CEF是等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享經(jīng)濟(jì)與我們的生活息息相關(guān),其中,共享單車的使用給我們的生活帶來(lái)了很多便利.但在使用過(guò)程中出現(xiàn)一些不文明現(xiàn)象.某市記者為了解使用共享單車時(shí)的不文明行為.隨機(jī)抽查了該市部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖表(每個(gè)市民僅持有一種觀點(diǎn))

調(diào)查結(jié)果分組統(tǒng)計(jì)表

組別

觀點(diǎn)

頻數(shù)(人數(shù))

損壞零件

50

破譯密碼

20

亂停亂放

私鎖共享單車,歸為己用

其他

30

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

1)填空: ; ;

2)求扇形圖中組所在扇形的圓心角度數(shù);

3)若該市約有100萬(wàn)人,請(qǐng)你估計(jì)其中持有組觀點(diǎn)的市民人數(shù).

4)針對(duì)以上現(xiàn)象,作為初中生的你有什么合理化的建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖②,利用網(wǎng)格線畫(huà),使它與關(guān)于直線對(duì)稱.若每個(gè)小正方形邊長(zhǎng)為1,則的面積為__.

2)如圖①,用直尺和圓規(guī)在ABC的一邊上確定一點(diǎn),使PC=PB.ABP的周長(zhǎng)為16,BC=8,則ABC的周長(zhǎng)為__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)A(﹣1,3),與x軸的一個(gè)交點(diǎn)B(﹣4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①2a﹣b=0;abc<0;③拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)是(3,0);④方程ax2+bx+c﹣3=0有兩個(gè)相等的實(shí)數(shù)根;⑤當(dāng)﹣4<x<﹣1時(shí),則y2<y1

其中正確的是(  )

A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案