【題目】(1)如圖②,利用網(wǎng)格線畫,使它與關(guān)于直線對稱.若每個(gè)小正方形邊長為1,則的面積為__.
(2)如圖①,用直尺和圓規(guī)在△ABC的一邊上確定一點(diǎn),使PC=PB.若△ABP的周長為16,BC=8,則△ABC的周長為__.
【答案】見解析;2; 見解析;24.
【解析】
(1)根據(jù)軸對稱的性質(zhì)找到A、B、C的對應(yīng)點(diǎn)A’、B’、C’的位置,然后順次連接即可;用所在矩形的面積減去周圍三角形的面積可得的面積;
(2)用尺規(guī)作BC的垂直平分線,交AC于點(diǎn)P,則P點(diǎn)即為所求;連結(jié)BP,根據(jù)△ABP的周長為16,PC=PB,可得AB+AC=16,再根據(jù)三角形周長的定義解答.
解:(1)如圖所示:
的面積=;
(2)點(diǎn)如圖所示:
連結(jié)BP,
∵△ABP的周長=AB+PB+AP=16,PC=PB,
∴AB+PC+AP=AB+AC=16,
∴△ABC的周長=AB+AC+BC=16+8=24.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明.
已知:如圖,AB∥DE,求證:∠D+∠BCD﹣∠B=180°.
證明:過點(diǎn)C作CF∥AB.
∵CF∥AB(已作),
∴∠1= .
∵∠2=∠BCD﹣∠1,
∴∠2=∠BCD﹣∠B .
∵AB∥DE,CF∥AB(已知),
∴CF∥DE
∴∠D+∠2=180°
∴∠D+∠BCD﹣∠B=180° .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市在創(chuàng)建全國文明城市過程中,決定購買A,B兩種樹苗對某路段道路進(jìn)行綠化改造,已知購買A種樹苗8棵,B種樹苗3棵,需要950元;若購買A種樹苗5棵,B種樹苗6棵,則需要800元.
(1)求購買A,B兩種樹苗每棵各需多少元?
(2)考慮到綠化效果和資金周轉(zhuǎn),購進(jìn)A種樹苗不能少于48棵,且用于購買這兩種樹的資金不能超過7500元,若購進(jìn)這兩種樹苗共100棵,則有哪幾種購買方案?
(3)某包工隊(duì)承包種植任務(wù),若種好一棵A種樹苗可獲工錢30元,種好一棵B種樹苗可獲工錢20元,在第(2)問的各種購買方案中,種好這100棵樹苗,哪一種購買方案所付的種植工錢最少?最少工錢是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CA⊥AB,垂足為點(diǎn)A,AB=8,AC=4,射線BM⊥AB,垂足為點(diǎn)B,一動(dòng)點(diǎn)E從A點(diǎn)出發(fā)以2厘米/秒的速度沿射線AN運(yùn)動(dòng),點(diǎn)D為射線BM上一動(dòng)點(diǎn),隨著E點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),且始終保持ED=CB,當(dāng)點(diǎn)E離開點(diǎn)A后,運(yùn)動(dòng)______ 秒時(shí),△DEB與△BCA全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2+(a﹣2)x+3的圖象與一次函數(shù)y=x(1≤x≤2)的圖象有且僅有一個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A. a=3±2 B. ﹣1≤a<2
C. a=3或﹣≤a<2 D. a=3﹣2或﹣1≤a<﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)由大小相同的小立方塊搭成的幾何體如圖1,請?jiān)趫D2的方格中畫出該幾何體的俯視圖和左視圖.
(2)用小立方體搭一個(gè)幾何體,使得它的俯視圖和左視圖與你在方格中所畫的一致,則這樣的幾何體最少要 個(gè)小立方塊,最多要 個(gè)小立方塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AB上的一點(diǎn),∠AOC=45°,OE是∠BOC內(nèi)部的一條射線,且OF平分∠AOE.
(1)如圖1,若∠COF=35°,求∠EOB的度數(shù);
(2)如圖2,若∠EOB=40°,求∠COF的度數(shù);
(3)如圖3,∠COF與∠EOB有怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩個(gè)紙箱,每個(gè)紙箱內(nèi)各裝有4個(gè)材質(zhì)、大小都相同的乒乓球,其中一個(gè)紙箱內(nèi)4個(gè)小球上分別寫有1、2、3、4這4個(gè)數(shù),另一個(gè)紙箱內(nèi)4個(gè)小球上分別寫有5、6、7、8這4個(gè)數(shù),甲、乙兩人商定了一個(gè)游戲,規(guī)則是:從這兩個(gè)紙箱中各隨機(jī)摸出一個(gè)小球,然后把兩個(gè)小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得1分,若得到積是3的倍數(shù),則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進(jìn)行下一次游戲,最后得分高者勝出.。
(1)請你通過列表(或樹狀圖)分別計(jì)算乘積是2的倍數(shù)和3的倍數(shù)的概率;
(2)你認(rèn)為這個(gè)游戲公平嗎?為什么?若你認(rèn)為不公平,請你修改得分規(guī)則,使游戲?qū)﹄p方公平.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com