【題目】如圖,拋物線x軸交于A、B兩點(AB的左側(cè)),與y軸交于點N,過A點的直線ly軸交于點C,與拋物線的另一個交點為D,已知,P點為拋物線上一動點(不與A、D重合).

1)求拋物線和直線l的解析式;

2)當(dāng)點P在直線l上方的拋物線上時,過P點作PEx軸交直線l于點E,作軸交直線l于點F,求的最大值;

3)設(shè)M為直線l上的點,探究是否存在點M,使得以點N、C,MP為頂點的四邊形為平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

【答案】1,直線l的表達(dá)式為:;(2最大值:18;(3)存在,P的坐標(biāo)為:.

【解析】

1)將點A、D的坐標(biāo)分別代入直線表達(dá)式、拋物線的表達(dá)式,即可求解;

2,即可求解;

3)分NC是平行四邊形的一條邊、NC是平行四邊形的對角線,兩種情況分別求解即可.

解:(1)將點AD的坐標(biāo)代入直線表達(dá)式得:,解得:,

故直線l的表達(dá)式為:,

將點A、D的坐標(biāo)代入拋物線表達(dá)式,

同理可得拋物線的表達(dá)式為:;

2)直線l的表達(dá)式為:,則直線lx軸的夾角為,

即:則

設(shè)點P坐標(biāo)為、則點

,故有最大值,

當(dāng)時,其最大值為18;

3

①當(dāng)NC是平行四邊形的一條邊時,

設(shè)點P坐標(biāo)為、則點

由題意得:,即:

解得04(舍去0),

則點P坐標(biāo)為;

②當(dāng)NC是平行四邊形的對角線時,

NC的中點坐標(biāo)為,

設(shè)點P坐標(biāo)為、則點,

N、C,M、P為頂點的四邊形為平行四邊形,則NC的中點即為PM中點,

即:,

解得:(舍去0),

故點;

故點P的坐標(biāo)為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形ABOC的邊BO,CO分別在x軸,y軸上,A點的坐標(biāo)為(﹣8,6),點P在矩形ABOC的內(nèi)部,點EBO邊上,滿足△PBE∽△CBO,當(dāng)△APC是等腰三角形時,P點坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,AC=BC,點D在邊AB上,連接CD,將線段CD繞點C順時針旋轉(zhuǎn)90°至CE位置,連接AE.

(1)求證:ABAE;

(2)若BC2=ADAB,求證:四邊形ADCE為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為αβ,且tanα=6,tanβ=,求燈桿AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個二次函數(shù)圖象上部分點的橫坐標(biāo)與縱坐標(biāo)的對應(yīng)值如表所示:

3

2

1

0

1

0

3

4

3

0

(1)求這個二次函數(shù)的表達(dá)式;

(2)在給定的平面直角坐標(biāo)系中畫出這個二次函數(shù)的圖象;

(3)當(dāng)時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年共享單車上市以來,給人們的出行提供了了便利,受到了廣大市民的青睞,某公司為了了解員工上下班回家的路線(設(shè)路程為x公里)情況,隨機抽取了若干名員工進(jìn)行了問卷調(diào)查,現(xiàn)將這些員工的謂查結(jié)果分為四個等級,A0≤x≤3、B3x≤6C6x≤9、Dx9,并將調(diào)查結(jié)果繪制成如下兩個不完整的統(tǒng)計圖。

1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖中的B D ;

2)所抽取員工下班路程的中位數(shù)落在等級 (填字母)

3)若該公司有900名員工,為了方便員工上下班,在高峰期時規(guī)定路程在6公里以上可優(yōu)先選擇共享單車下斑,請你估算該公司有多少人可以優(yōu)先選擇共享單車。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知直線與拋物線相交于拋物線的頂點和另一點,點在第四象限.

若點,點的橫坐標(biāo)為,求點的坐標(biāo);

過點軸的平行線與拋物線的對稱軸交于點,直線軸交于點,若,,求的面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生每月的零用錢情況,從甲、乙、丙三個學(xué)校各隨機抽取200名學(xué)生,調(diào)查了他們的零用錢情況(單位:元)具體情況如下:

學(xué)校頻數(shù)零用錢

100≤x200

200≤x300

300≤x400

400≤x500

500以上

合計

5

35

150

8

2

200

16

54

68

52

10

200

0

10

40

70

80

200

在調(diào)查過程中,從__(填,)校隨機抽取學(xué)生,抽到的學(xué)生零用錢不低于300的可能性最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⑴如圖1,點C在線段AB上,點D、E在直線AB同側(cè),∠A=∠DCE=∠CBE,DCCE.求證:ACBE.

⑵如圖2,點C在線段AB上,點D、E在直線AB同側(cè),∠A=∠DCE=∠CBE90°.

①求證:;②連接BD,若∠ADC=∠ABD,AC3BC,求tanCDB的值;

⑶如圖3,在△ABD中,點CAB邊上,且∠ADC=∠ABD,點EBD邊上,連接CE,∠BCE+∠BAD180°,AC3,BC,CE,直接寫出的值.

查看答案和解析>>

同步練習(xí)冊答案