【題目】已知:△ABC是等腰直角三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:
(1)如圖①,若點(diǎn)P在線段AB上,且AC=1+ ,PA= ,則:
① 線段PB= , PC= ;
② 猜想:PA2 , PB2 , PQ2三者之間的數(shù)量關(guān)系為;
(2)如圖②,若點(diǎn)P在AB的延長(zhǎng)線上,在(1)中所猜想的結(jié)論仍然成立,請(qǐng)你利用圖②給出證明過程;
(3)若動(dòng)點(diǎn)P滿足 = ,求 的值.(提示:請(qǐng)利用備用圖進(jìn)行探求)
【答案】
(1),2,AP2+BP2=PQ2
(2)解:如圖②:過點(diǎn)C作CD⊥AB,垂足為D.
∵△ACB為等腰直角三角形,CD⊥AB,
∴CD=AD=DB.
∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DCPD+PD2,
PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DCPD+PD2,
∴AP2+BP2=2CD2+2PD2,
∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,
∴AP2+BP2=2PC2.
∵△CPQ為等腰直角三角形,
∴2PC2=PQ2.
∴AP2+BP2=PQ2.
(3)解:如圖③:過點(diǎn)C作CD⊥AB,垂足為D.
①當(dāng)點(diǎn)P位于點(diǎn)P1處時(shí).
∵ ,
∴ .
∴ .
在Rt△CP1D中,由勾股定理得: = = DC,
在Rt△ACD中,由勾股定理得:AC= = = DC,
∴ .
②當(dāng)點(diǎn)P位于點(diǎn)P2處時(shí).
∵ = ,
∴ .
在Rt△CP2D中,由勾股定理得: = = ,
在Rt△ACD中,由勾股定理得:AC= = = DC,
∴ .
綜上所述, 的比值為 或 .
【解析】(1)如圖①:
①∵△ABC是等腰直直角三角形,AC=1+
∴AB= = = + ,
∵PA= ,
∴PB= ,
∵△ABC和△PCQ均為等腰直角三角形,
∴AC=BC,PC=CQ,∠ACP=∠BCQ,
∴△APC≌△BQC.
∴BQ=AP= ,∠CBQ=∠A=45°.
∴△PBQ為直角三角形.
∴PQ= .
∴PC= PQ=2.
所以答案是: ,2;
②如圖1.
∵△ACB為等腰直角三角形,CD⊥AB,
∴CD=AD=DB.
∵AP2=(AD﹣PD)2=(DC﹣PD)2=DC2﹣2DCPD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2DCPD+PD2
∴AP2+BP2=2CD2+2PD2,
∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,
∴AP2+BP2=2PC2.
∵△CPQ為等腰直角三角形,
∴2PC2=PQ2.
∴AP2+BP2=PQ2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮早晨從家騎車到學(xué)校,先上坡后下坡,所行路程y(米)與時(shí)間x(分鐘)的關(guān)系如圖所示,若返回時(shí)上坡、下坡的速度仍與去時(shí)上、下坡的速度分別相同,則小明從學(xué)校騎車回家用的時(shí)間是________分鐘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,則這個(gè)方程根的情況是( )
A.有兩個(gè)正根
B.有兩個(gè)負(fù)根
C.有一正根一負(fù)根且正根絕對(duì)值大
D.有一正根一負(fù)根且負(fù)根絕對(duì)值大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,BC=6,AB、AC的垂直平分線分別交邊BC于點(diǎn)M、N,若MN=2,則△AMN的周長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,延長(zhǎng)BC到點(diǎn)F,連接AF,使∠ABC=2∠CAF.
(1)求證:AF是⊙O的切線;
(2)若AC=4,CE:EB=1:3,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(b2)3(b3)4÷(﹣b5)3
(2)()﹣1+(π﹣2018)0﹣(﹣1)2019
(3)(3﹣x)(﹣x+3)﹣x(x+1)
(4)(2a+b﹣5)(2a﹣b﹣5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,則AC=( )
A.3sin40°
B.3sin50°
C.3tan40°
D.3tan50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知非負(fù)數(shù)a、b、c滿足,代數(shù)式3a+4b+5c的最大值是x,最小值是y,則x+y的值是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家距離學(xué)校8千米,今天早晨,小明騎車上學(xué)圖中,自行車出現(xiàn)故障,恰好路邊有便民服務(wù)點(diǎn),幾分鐘后車修好了,他以更快的速度勻速騎車到校.我們根據(jù)小明的這段經(jīng)歷畫了一幅圖象(如圖),該圖描繪了小明行駛的路程(千米)與他所用的時(shí)間(分鐘)之間的關(guān)系.請(qǐng)根據(jù)圖象,解答下列問題:
(1)小明行了多少千米時(shí),自行車出現(xiàn)故障?修車用了幾分鐘?
(2)小明從早晨出發(fā)直到到達(dá)學(xué)校共用了多少分鐘?
(3)小明修車前、后的行駛速度分別是多少?
(4)如果自行車未出現(xiàn)故障,小明一直用修車前的速度行駛,那么他比實(shí)際情況早到或晚到多少分鐘?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com