【題目】如圖,已知∠1+∠2=180°,∠3=∠B,試判斷DE與BC的位置關(guān)系,并對(duì)結(jié)論進(jìn)行說理.
證明:DE∥BC.
理由如下:
∵∠1+∠2=180°(已知)
∠1+∠4=180°(平角定義)
∴∠2=∠4(同角的補(bǔ)角相等)
∴ ∥ ( 。
∴∠3+ =180°( )
∵∠3=∠B(已知)
∴∠B+ =180°(等量代換)
∴ ∥ ( 。
【答案】EF,AB,內(nèi)錯(cuò)角相等,兩直線平行,∠BDE,兩直線平行,同旁內(nèi)角互補(bǔ),∠BDE,DE,BC,同旁內(nèi)角互補(bǔ),兩直線平行.
【解析】
根據(jù)同角的補(bǔ)角相等,得∠4=∠2,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行得直線EF∥AB,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),得到∠3+∠BDE=180°,從而∠BDE+∠B=180°,即可證明結(jié)論.
解:∵∠1+∠2=180°(已知)
∠1+∠4=180°(平角定義)
∴∠2=∠4(同角的補(bǔ)角相等)
∴EF∥AB(內(nèi)錯(cuò)角相等,兩直線平行)
∴∠3+∠BDE=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵∠3=∠B(已知)
∴∠B+∠BDE=180°(等量代換)
∴DE∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB,P1是AB的黃金分割點(diǎn)(AP1>BP1),點(diǎn)O是AB的中點(diǎn),P2是P1關(guān)于點(diǎn)O的對(duì)稱點(diǎn).求證:P1B是P2B和P1P2的比例中項(xiàng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過點(diǎn)(0,﹣3),請(qǐng)你確定一個(gè)b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間.你確定的b的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛轎車和一輛貨車同時(shí)從甲地出發(fā),已知轎車的速度比貨車的速度每小時(shí)快20千米,當(dāng)轎車行駛到距甲地360千米的丙地時(shí),貨年恰好行駛到距離甲地300千米的乙地,問轎車與貨車的速度分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程kx2+(2k+1)x+2=0.
(1)求證:無論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)當(dāng)拋物線y=kx2+(2k+1)x+2圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù)時(shí),若P(a,y1),Q(1,y2)是此拋物線上的兩點(diǎn),且y1>y2 , 請(qǐng)結(jié)合函數(shù)圖象確定實(shí)數(shù)a的取值范圍;
(3)已知拋物線y=kx2+(2k+1)x+2恒過定點(diǎn),求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)計(jì)算:|﹣2|+( )﹣1﹣( ﹣2010)0﹣ tan60°
(2)先化簡(jiǎn),再求值: ÷(x﹣ ),其中x= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,∠A = ∠D,試說明 AC∥DE 成立的理由.
下面是彬彬同學(xué)進(jìn)行的推理,請(qǐng)你將彬彬同學(xué)的推理過程補(bǔ)充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (兩直線平行,內(nèi)錯(cuò)角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代換)
∴ AC ∥ DE ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過點(diǎn)P作PQ∥BD交BE于點(diǎn)Q,連接QO,設(shè)PD=x,△PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com